APPENDIX FRA 6

Calculations

APPENDIX FRA 6.1

Flood Relief Channel Diversion

White Young Green

Project No *A012584*

Calculation Sheet No

Office

	Project Title WEST SOUTH ALL	Prepared by RCB
	Work Section FLODO RELIEF CHANNEL DIVERSION	Date JUNE 2008
1	The new pump lune access entuits irosings of the Yeading Brook & Flood Relief Channel (FRC)	
2	The EA have requested that the	
	length of illust for the FRE be	
	Kept to a minimimum	
3	the previous approved silution enturies	
	1) FRC Diversion mainly open channel 3.5 bed width, 1:3 Ave side slopes	
	Z) 25 m long intert on FRE 5.5 m nille x 3.7 m High	
).	3) Bridge over Yealing Brook- 5PIP = 57.5m.	
4	The access rood has son been re-aligned. This gives an opportunity to complishe the FRC channel with the Brook and provide a larger class then bridge.	

White Young Green

Project No AD1256U

Calculation
Sheet No Z A

Office

		Division
	Project Title WEST SONTHALL	Prepared by
	Work Section FRC DIVERSION	Date
5	EA have indicated general principle to be acceptable but	
)	require a 2-stage channel. also EA have now Flord data.	
6	New proposal	
Ž.	a) Oiversion channel - main channel 2-0 m bed 1:3 stores - bigh from shelf approx 2 m wilde 0-6 m above main invert. b) Widen span Bridge b) Widen Scuding Brook lownstrom of confluence. as (a) above. c) seduce back to existing bection at hard backed uned by Raidway Bridge.	
7	Hecras a) Local reach modelled	
	Taken from EA data (Hulirow 2008)	

White Young Green

Project No AD12564

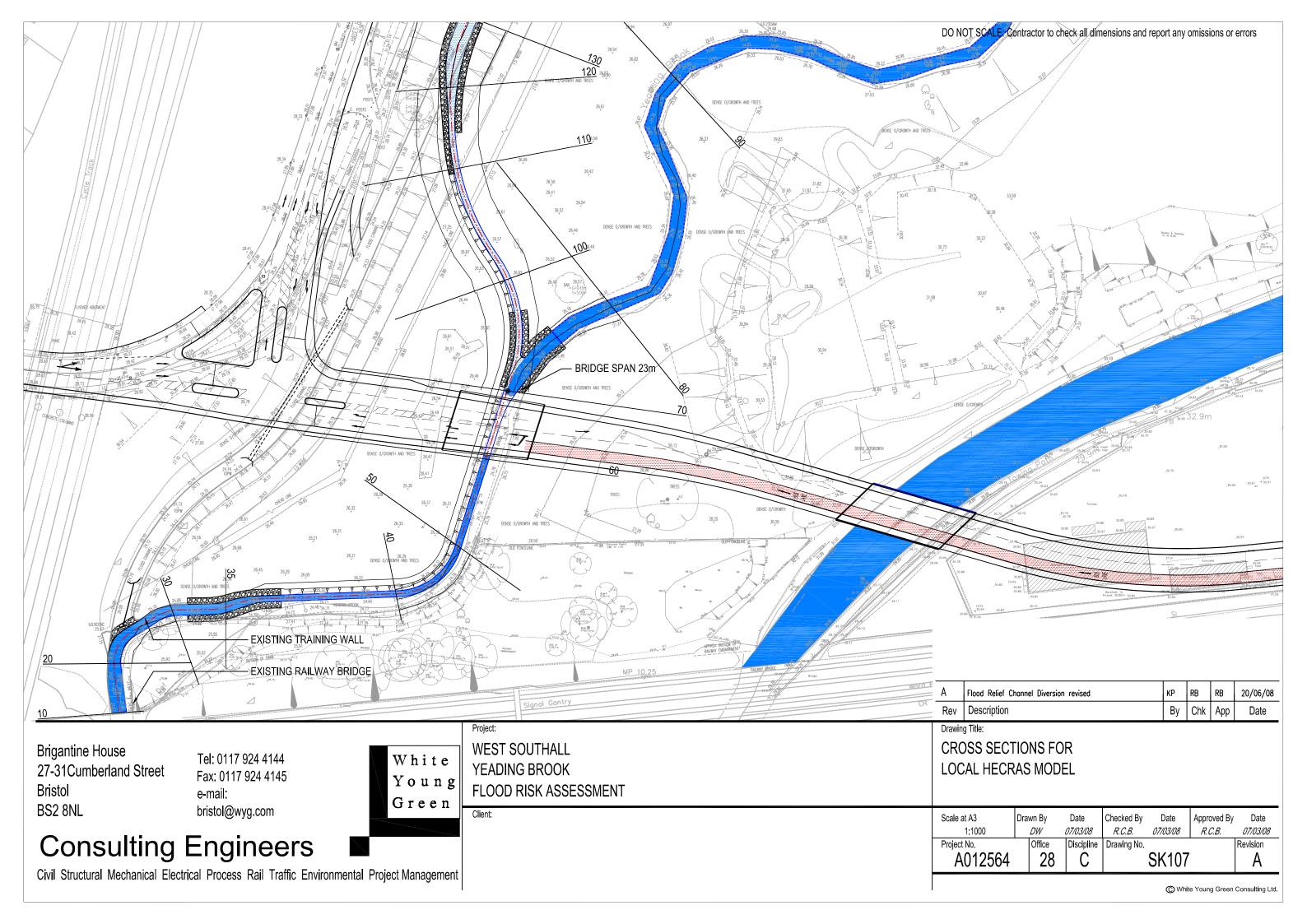
Calculation Sheet No 3 A

Office

		Dividion
	Project Title WEST SOUTHALL	Prepared by
	Work Section FRC DIVERSION	Date
	b) channel roughness = n = 0.027 Out of bank n = 0.125 gave good fit to EA DATA	sht y A
	c) Diversion added (no Bridge) => 0.02 m in coense for 920 0.05 m in coense for 920 10007209	sht 5A
	D) Bridge added to model. Further increase of 0.01 m.	sht bA
8	For cross section locations see sht q	

HEC-RAS Reach	S Plan: P1YB River: y River Sta Profile	eading Rea Q Total (m3/s)		W.S. Elev	Crit W.S.		E.G. Slope	e Vel Chnl (m/s)		Top Width (m)	Froude # Chl	from EA model W.S elev m
yupper	90 PF 1	12.58				. ,	0.000349	. ,	. ,		0.19	26.74 Q ₂₀
yupper	90 PF 2	15.98					0.000312				0.19	27.03 Q ₁₀₀
	90 PF 3	17.71					0.000269				0.18	27.22 Q _{100+20%}
yupper	90 FF 3	17.71	24.03	21.21		21.24	0.000269	0.00	41.2	50.17	0.16	Z1.ZZ Q _{100+20%}
yupper	80 PF 1	12.58	24.51	26.69		26.73	0.000446	0.87	22.34	53.11	0.22	
yupper	80 PF 2	15.98					0.000345				0.2	
yupper	80 PF 3	17.71					0.000276				0.18	
, , ,												
yupper	70 PF 1	12.58					0.000406				0.21	
yupper	70 PF 2	15.98					0.000284				0.18	
yupper	70 PF 3	17.71	24.45	27.18		27.2	0.00021	0.73	79.77	101.04	0.16	
	60 PF 1	12.58	24.3	26.67		26.7	0.000308	0.76	30.25	78.92	0.19	
yupper	60 PF 2	15.98					0.000308					
yupper	60 PF 3	17.71					0.000217				0.16	
yupper	60 PF 3	17.71	24.3	27.10		21.2	0.000166	0.67	74.7	90.43	0.14	
yupper	50 PF 1	12.58	24.62	26.66		26.69	0.000302	0.75	35.69	61.5	0.18	
yupper	50 PF 2	15.98	24.62	26.98		27	0.000222	0.72	55.1	61.5	0.16	
yupper	50 PF 3	17.71	24.62	27.18		27.19	0.000177	0.68	67.29	61.5	0.15	
yupper	40 PF 1	12.58					0.000446				0.22	
yupper	40 PF 2	15.98					0.000358				0.21	
yupper	40 PF 3	17.71	24.69	27.14		27.18	0.000299	0.88	35.11	28.16	0.19	
vunnor	30 PF 1	12.58	24.08	26.62		26.64	0.000135	0.62	33.79	26.38	0.13	26.65 Q ₂₀
yupper												
yupper	30 PF 2	15.98					0.000134			26.87	0.13	26.97 Q ₁₀₀
yupper	30 PF 3	17.71	24.08	27.14		27.16	0.000125	0.68	47.63	27.18	0.13	27.18 Q _{100+20%}
vuppor	20 PF 1	12.58	24.1	26.62		26.62	0.000101	0.43	37.33	31.54	0.11	
yupper yupper	20 PF 2	15.98					0.000101			32.43	0.11	
yupper	20 PF 3	17.71					0.0000072			33	0.1	
yuppcı	2011 0	17.71	24.1	27.14		27.10	0.000072	. 0	04.1	00	0.1	
yupper	10 PF 1	12.58	24.57	26.58	25.34	1 26.62	0.000392	0.94	15.55	10	0.22	26.58 Q ₂₀
yupper	10 PF 2	15.98	24.57	26.89	25.47	7 26.94	0.0004	1.03	18.75	10.66	0.22	26.89 Q ₁₀₀
yupper	10 PF 3	17.71					0.000378				0.21	27.09 Q _{100+20%}
yuppei	10 FF 3	17.71	24.57	27.09	25.52	27.14	0.000376	1.04	20.92	11.1	0.21	21.09 Q _{100+20%}

HEC-RAS	Plan: two stage									
Reach	River Sta Profile	Q Total	Min Ch El	W.S. Elev Crit W.S.	E.G. Elev	E.G. Slope	Vel Chnl	Flow Area	Top Width	Froude # Chl
		(m3/s)	(m)	(m) (m)	(m)	(m/m) ((m/s)	(m2)	(m)	
yupper	90 Q20	12.58	24.05	26.75	26.78	0.000337	0.83	27.15	33.84	0.19
yupper	90 Q100	15.98	24.05	27.06	27.09	0.000289	0.85	39.89	43.55	0.18
yupper	90 Q100+20%	(17.71	24.05	27.26	27.29	0.000244	0.83	48.74	44.58	0.17
yupper	80 Q20	12.58	24.51	26.71	26.74	0.000426	0.86	23.34	53.61	0.22
yupper	80 Q100	15.98	24.51	27.04	27.07	0.000315	0.81	41.84	58.61	0.19
yupper	80 Q100+20%	17.71	24.51	27.24	27.27	0.000246	0.76	54.23	59.99	0.17
yupper	70 Q20	12.58	24.22	26.72	26.73	0.000054	0.34	49.23	71.92	0.08
yupper	70 Q100	15.98	24.22	27.05	27.05	0.000032	0.29	78.58	99.29	0.07
yupper	70 Q100+20%	(17.71	24.22	27.26	27.26	0.000022	0.26	99.24	101.99	0.06
floodchan	130 Q20	12.58	24.32	26.71	26.75	0.000256	0.87	20.15	15.48	0.18
floodchan	130 Q100	15.98	24.32	27.03	27.07	0.000253	0.95	25.5	21.75	0.18
floodchan	130 Q100+20%	(17.71	24.32	27.24	27.28	0.000234	0.96	29.27	27.22	0.18
floodchan	120 Q20	12.58	24.3	26.72	26.74	0.000109	0.54	27.66	18.49	0.13
floodchan	120 Q100	15.98	24.3		27.06	0.000103	0.57	33.92	25.1	0.13
floodchan	120 Q100+20%	(17.71	24.3	27.25	27.27	0.000094	0.56		30.86	0.12
floodchan	110 Q20	6.15	24.28	26.73	26.73	0.000022	0.23	45.27	59.85	0.06
floodchan	110 Q100	7.74	24.28	27.05	27.06	0.000017	0.22	66.52	70.47	0.05
floodchan	110 Q100+20%	8.94	24.28	27.26	27.26	0.000015	0.22	81.32	73.03	0.05
floodchan	100 Q20	6.15	24.25	26.73	26.73	0.00002	0.22	35.73	52.39	0.06
floodchan	100 Q100	7.74	24.25	27.05	27.06	0.000015	0.22	55.29	69.8	0.05
floodchan	100 Q100+20%	8.94	24.25	27.26	27.26	0.000013	0.22	69.57	69.8	0.05
floodchan	70 Q20	6.15	24.22	26.73	26.73	0.000012	0.16	52.88	72.21	0.04
floodchan	70 Q100	7.74	24.22	27.05	27.05	0.000007	0.14	82.2	99.32	0.03
floodchan	70 Q100+20%	8.94	24.22	27.26	27.26	0.000005	0.13	102.8	102.02	0.03
ylower	70 Q20	12.58	24.22	26.72	26.73	0.000049	0.32	52.63	71.95	0.08
ylower	70 Q100	15.98	24.22	27.05	27.05	0.00003	0.28	81.96	99.29	0.06
ylower	70 Q100+20%	17.71	24.22	27.26	27.26	0.00002	0.25	102.63	102	0.05
ylower	60 Q20	12.58	24.2	26.72	26.73	0.000081	0.4	42.39	84.11	0.1
ylower	60 Q100	15.98	24.2	27.05	27.05	0.000042	0.33	70.93	88.63	0.07
ylower	60 Q100+20%	17.71	24.2	27.26	27.26	0.000028	0.29	89.47	91.45	0.06
•										
ylower	50 Q20	12.58	24.17	26.71	26.72	0.000085	0.44	49.63	61.5	0.1
ylower	50 Q100	15.98	24.17	27.04	27.05	0.000069	0.44	69.8	61.5	0.1
ylower	50 Q100+20%	(17.71	24.17	27.25	27.26	0.000059	0.44	82.46	61.5	0.09


WEST SOUTHALL
YEADING BROOK AT PUMP LANE
TWO STAGE DIVERSION CHANNEL

HEC-RAS	Plan: two stage										
Reach	River Sta Profile	Q Total	Min Ch El	W.S. Elev	Crit W.S.	E.G. Elev	E.G. Slope	Vel Chnl	Flow Area	Top Width	Froude # Chl
		(m3/s)	(m)	(m)	(m)	(m)	(m/m)	(m/s)	(m2)	(m)	
ylower	40 Q20	12.58	24.15	26.71		26.72	0.000091	0.45	32.83	27.65	0.11
ylower	40 Q100	15.98	24.15	27.04		27.05	0.000081	0.48	41.94	28.04	0.11
ylower	40 Q100+20%	17.71	24.15	27.24		27.25	0.000071	0.48	47.72	28.28	0.1
ylower	35 Q20	12.58	24.06	26.71		26.71	0.000069	0.36	37.68	33.79	0.09
ylower	35 Q100	15.98	24.06	27.04		27.04	0.000057	0.38	49.02	35.27	0.09
ylower	35 Q100+20%	17.71	24.06	27.24		27.25	0.000049	0.37	56.39	36.2	0.08
ylower	30 Q20	18.73	24.08	26.67		26.71	0.000276	0.9	35.1	26.46	0.18
ylower	30 Q100	23.72	24.08	27		27.04	0.000272	0.97	43.75	26.96	0.19
ylower	30 Q100+20%	26.65	24.08	27.2		27.24	0.00026	0.99	49.3	27.27	0.18
ylower	20 Q20	18.73	24.1	26.67		26.69	0.0002	0.61	38.91	31.68	0.16
ylower	20 Q100	23.72	24.1	27		27.02	0.000165	0.63	49.44	32.6	0.15
ylower	20 Q100+20%	26.65	24.1	27.21		27.23	0.000146	0.64	56.24	33.18	0.14
ylower	10 Q20	18.73	24.57	26.58	25.5	6 26.68	0.000234	1.4	15.55	10	0.32
ylower	10 Q100	23.72									0.32
ylower	10 Q100+20%	£ 26.65	24.57	27.09	25.	8 27.21	0.00023	1.57	20.92	11.1	0.32

HEC-RAS												
Reach	River Sta	Profile	Q Total (m3/s)	Min Ch El (m)	W.S. Elev (m)	Crit W.S. (m)	E.G. Elev (m)	E.G. Slope (m/m)	Vel Chnl (m/s)	Flow Area (m2)	Top Width (m)	Froude # Chl
yupper	90	Q20	12.58	24.05	26.75		26.78	0.00033	0.82	27.47	34.27	0.19
yupper	90	Q100	15.98	24.05	27.07		27.1	0.000283	0.84	40.59	46.5	0.18
yupper	90	Q100+20%	17.71	24.05	27.27		27.3	0.000239	0.82	50.49	51.89	0.17
yupper	80	Q20	12.58				26.75					
yupper	80	Q100	15.98				27.08	0.000306			58.8	0.19
yupper	80	Q100+20%	17.71	24.51	27.26		27.28	0.000239	0.75	54.99	60.01	0.17
yupper	70	Q20	12.58				26.74					
yupper	70	Q100	15.98	24.22	27.06		27.07	0.000031	0.29	79.79	99.45	0.06
yupper	70	Q100+20%	17.71	24.22	27.27		27.27	0.000021	0.26	100.51	102.16	0.05
floodchan	130	Q20	12.58	3 24.32			26.76			20.31		0.18
floodchan	130	Q100	15.98	24.32	27.04		27.09	0.000248	0.94	26.19	22.1	0.18
floodchan	130	Q100+20%	17.71	24.32	27.25		27.29	0.000228	0.95	31.26	27.59	0.18
floodchan		Q20	12.58				26.75					
floodchan	120	Q100	15.98				27.07	0.000101	0.56	34.18	25.46	0.13
floodchan	120	Q100+20%	17.71	24.3	27.26		27.28	0.000092	0.56	38.38	31.23	0.12
floodchan	110	Q20	6.15				26.74	0.000033			42.3	0.07
floodchan	110	Q100	7.74				27.07					
floodchan	110	Q100+20%	8.94	24.28	27.27		27.27	0.000026	0.29	55.61	53.6	0.07
floodchan		Q20	6.15				26.74		0.22			0.06
floodchan		Q100	7.74					0.000018				0.05
floodchan	100	Q100+20%	8.94	24.25	27.27		27.27	0.000017	0.23	52.14	37.47	0.05
floodchan		Q20	6.15				26.74		0.16			
floodchan	70	Q100	7.74				27.07	0.000007	0.14	77.76	78.08	0.03
floodchan	70	Q100+20%	8.94	24.22	27.27		27.27	0.000005	0.13	94.02	80.78	0.03
ylower	70	Q20	12.58			25.06	6 26.74	0.000053			72.68	0.08
ylower	70	Q100	15.98					0.000031	0.29			
ylower	70	Q100+20%	17.71	24.22	27.27	25.24	27.27	0.000021	0.26	100.51	102.16	0.05
ylower	65	i	Bridge									
ylower	60	Q20	12.58	3 24.2	26.73		26.73	0.000094	0.43	34.65	41.92	0.11
ylower	60	Q100	15.98	24.2	27.06		27.06	0.000066	0.4	49.22	46.43	0.09
ylower	60	Q100+20%	(17.71	24.2	27.26		27.27	0.000051	0.37	59.07	49.25	0.08

WEST SOUTHALL YEADING BROOK AT PUMP LANE TWO STAGE DIVERSION CHANNEL PLUS BRIDGE

HEC-RAS	Plan: Plan 01										
Reach	River Sta Profile	Q Total	Min Ch El	W.S. Elev	Crit W.S.	E.G. Elev	E.G. Slope	Vel Chnl	Flow Area	Top Width	Froude # Chl
		(m3/s)	(m)	(m)	(m)	(m)	(m/m)	(m/s)	(m2)	(m)	
	50.000										
ylower	50 Q20	12.58				26.73					0.14
ylower	50 Q100	15.98				27.06					0.14
ylower	50 Q100+20%	{ 17.71	24.17	27.24		27.26	0.000118	0.65	50.51	30.5	0.13
ylower	40 Q20	12.58	24.15	26.7		26.73	0.000166	0.64	23.05	12.64	0.15
ylower	40 Q100	15.98	24.15	27.03		27.05	0.000159	0.7	27.22	13.03	0.15
ylower	40 Q100+20%	17.71	24.15	27.23		27.26	0.000146	0.71	29.91	13.27	0.15
ylower	35 Q20	12.58	24.06	26.7		26.71	0.000124	0.61	31.42	21.74	0.13
ylower	35 Q100	15.98	24.06	27.02		27.04	0.000122	0.66	38.74	23.21	0.13
ylower	35 Q100+20%	£ 17.71	24.06	27.23		27.25	0.000113	0.67	43.61	24.13	0.13
ylower	30 Q20	18.73	24.08	3 26.67		26.71	0.000276	0.9	35.1	26.46	0.18
ylower	30 Q100	23.72	24.08	3 27		27.04	0.000272	0.97	43.75	26.96	0.19
ylower	30 Q100+20%	26.65	24.08	3 27.2		27.24	0.00026	0.99	49.3	27.27	0.18
ylower	20 Q20	18.73	24.1	26.67		26.69	0.0002	0.61	38.91	31.68	0.16
ylower	20 Q100	23.72				27.02					0.15
ylower	20 Q100+20%					27.23					
ylower	10 Q20	18.73	24.57	26.58	25.56	6 26.68	0.000234	1.4	15.55	10	0.32
ylower	10 Q20 10 Q100	23.72					0.000234				0.32
ylower	10 Q100 10 Q100+209						0.000237				0.32
ylovvei	10 Q100+207	20.03	24.57	21.09	20.0	21.21	0.00023	1.57	20.92	11.1	0.32

APPENDIX FRA 6.2

Surface Water Attenuation

Project
No AO 12564

Calculation Sheet No

Office

	Division
Project Title WEST SOUTHALL	Prepared by RCB
Work Section SW ATTENUATION - PUMP LANE	Date 7/1/07
USING 10H FIGURES FOR DISCHARGE ROAR = 6 1/5/bA A100 = 24 1/5/bA	(Sht 15)
New impermeable able - 4800 m² New impermeable able - 4800 m² Newce discharge @ 50 mm/pr- 66 1/4, For permetted discharge of 24/4/per At 1:100 yr = 11.5 1/5.	
Use top protion of All out full thannel. say 54 m × 5.5 m bed + 1:3 6:de store - Using 100 f × 10 m Throthe pipe = storage required: 195 m³ peak from: 11.4 For 100 yr + 30% rain fall storage 261 m³ e depth 0.6446 m peak from 12-8	(5H 3)

Project
No AO 12 564

Calculation
Sheet No 2

Office

	Project Title West south all.	Prepared by R.C.B
	Work Section 5. W. A Henuation - Pump Lane	Date 7/1/07
	or using MO5 profile bydes bruke 147 mm did	(6rt 9)
·	for 1:100 yr. storage = 143 m² at depth = 00500dm peak from = 10-3 Hz	
	for $1=100$ yr $+30\%$ rain fall. 3 forage = 262 m ³ at depth = $0-652$ m	(sht 12)
	peak from = 10.9 4/3	

White Young Green
Brigantine House
27-31 Cumberland Street
Bristol BS2 8NL
Date Jan 07
File pump lane 2007.SRC

Micro Drainage

West Southall
Pump Lane Link Road
Attenuation
Designed By RCB
Checked By
Source Control W.10.3

Summary of Results for 100 year Return Period

Dur	torm ation ins)	Maximum Control (1/s)	Maximum Overflow (1/s)	Maximum Outflow (1/s)	Maximum Water Level (m OD)	Maximum Depth (m)	Overflow Volume (m³)	Maximum Volume (m³)	Status
30	Summer	10.4	0.0	10.4	25.5273	0.4272	0.0	156.4	ок
60	Summer	10.7	0.0	10.7	25.5538	0.4537	0.0	168.1	ОК
120	Summer	10.8	0.0	10.8	25.5603	0.4602	0.0	171.0	ок
180	Summer	10.7	0.0	10.7	25.5553	0.4552	0.0	168.7	ок
240	Summer	10.7	0.0	10.7	25.5488	0.4487	0.0	165.9	ок
360	Summer	10.5	0.0	10.5	25.5323	0.4322	0.0	158.7	ок
480	Summer	10.2	0.0	10.2	25.5143	0.4142	0.0	150.8	ОК
600	Summer	10.0	0.0	10.0	25.4958	0.3957	0.0	142.9	ок
720	Summer	9.8	0.0	9.8	25.4778	0.3777	0.0	135.2	ок
960	Summer	9.3	0.0	9.3	25.4453	0.3452	0.0	121.9	окі
1440	Summer	8.6	0.0	8.6	25.3913	0.2912	0.0	100.2	ОК
30	Winter	10.9	0.0	10.9	25.5717	0.4717	0.0	176.1	ОК
60	Winter	11.3	0.0	11.3	25.6023	0.5022	0.0	190.0	ок
	Winter	11.4	0.0	11.4	25.6128	0.5127	0.0	195.0	OK.
	Winter	11.3	0.0	11.3	25.6038	0.5037	0.0	190.8	O K
240	Winter	11.2	0.0	11.2	25.5948	0.4947	0.0	186.6	ок
	Winter	10.9	0.0	10.9	25.5713	0.4712	0.0	175.8	ОК
	Winter	10.6	0.0	10.6	25.5442	0.4442	0.0	163.9	ок
	Winter	10.3	0.0	10.3	25.5173	0.4172	0.0	152.2	ок
	Winter	10.0	0.0	10.0	25.4917	0.3917	0.0	141.1	ОК
960	Winter	9.4	0.0	9.4	25.4463	0.3462	0.0	122.1	ОК
1440	Winter	8.3	0.0	8.3	25.3718	0.2717	0.0	92.7	ок

Dur	torm ation ins)	Rain (mm/hr)	Time-Peak (mins)
30	Summer	94.04	35
60	Summer	53.46	64
120	Summer	30.38	116
180	Summer	21.83	144
240	Summer	17.27	176
360	Summer	12.41	244
480	Summer	9.82	312
600		8.18	380
720		7.05	446
960	Summer	5.60	578
1440	Summer	4.05	828
30	Winter	94.04	35
60	Winter	53.46	62
120		30.38	118
180	Winter	21.83	150
240	Winter	17.27	186
360	Winter	12.41	264
480	Winter	9.82	338
600	Winter	8.18	408
720	Winter	7.05	478
960	Winter	5.60	612
1440	Winter	4.05	868

(c)1982-2006 Micro Drainage

White Young Green		Page 2
Brigantine House	West Southall	
27-31 Cumberland Street	Pump Lane Link Road	
Bristol BS2 8NL	Attenuation	
Date Jan 07	Designed By RCB	I DEMESSION
File pump lane 2007.SRC	Checked By	
Micro Drainage	Source Control W.10.3	

Rainfall Details

Region Return Period (years)		FEH	Rainfall Model
Site Location	511550	179950	TQ 11550 79950
C (1km)			-0.025
D1 (1km)			0.300
D2 (1km)			0.315
D3 (1km)			0.233
E (1km)			0.308
F (1km)			2.562
Cv (Summer)			0.750
Cv (Winter)			0.840
Shortest Storm (mins)			30
Longest Storm (mins)			1440
Summer Storms			Yes
Winter Storms			Yes
Climate Change %			+0

Time / Area Diagram

Total Area (ha) = 0.480

Time from:	(mins)	Area	Time	(mins)	Area
	to:	(ha)	from:	to:	(ha)
0	4	0.240	4	8	0.240

	White Young Green	
	Brigantine House	West Southall
	27-31 Cumberland Street	Pump Lane Link Road
	Bristol BS2 8NL	Attenuation
	Date Jan 07	Designed By RCB
	File pump lane 2007.SRC	Checked By
i	Micro Drainage	Source Control W.10.3

Tank/Pond Details

Invert Level (m) 25.100 Ground Level (m) 26.500

Depth	Area	Depth	Area	Depth	Area	Depth	Area	Depth	Area
(m)	(m²)	(m)	(m²)	(m)	(m²)	(m)	(m²)	(m)	(m²)
0.00 0.10 0.20 0.30 0.40 0.50	297.0 329.0 362.0 394.0 427.0 459.0	0.80 0.90 1.00	491.0 524.0 556.0 589.0 621.0		621.0 621.0 621.0 621.0 621.0 621.0	1.80 1.90 2.00 2.10 2.20 2.30	621.0 621.0 621.0 621.0 621.0	2.40 2.50	621.0 621.0

Pipe Outflow Control

Pipe Diameter (m) 0.100	Roughness (mm)	0.600	Invert Level	(m)	25.100
Slope (1:x)	100.0	Entry Loss Coef	0.500			
Length (m)	10.000	Coef of Contraction	0.600			

Weir / Flume Overflow Control

Discharge Coef 0.544 Width (m) 1.000 Crest Level (m) 26.000

White Young Green
Brigantine House
27-31 Cumberland Street
Bristol BS2 8NL
Date Jan 07
File pump lane 2007.SRC

Micro Drainage

West Southall
Pump Lane Link Road
Attenuation
Designed By RCB
Checked By
Source Control W.10.3

Summary of Results for 100 year Return Period (+30%)

Dur	torm ation ins)	Maximum Control (1/s)	Maximum Overflow (1/s)	Maximum Outflow (1/s)	Maximum Water Level (m OD)	Maximum Depth (m)	Overflow Volume (m³)	Maximum Volume (m³)	Status
30	Summer	11.6	0.0	11.6	25.6348	0.5347	0.0	205.2	ОК
60	Summer	12.0	0.0	12.0	25.6703	0.5702	0.0	222.0	ОК
120	Summer	12.2	0.0	12.2	25.6843	0.5843	0.0	228.8	ОК
180	Summer	12.1	0.0	12.1	25.6783	0.5783	0.0	226.0	ОК
240	Summer	12.0	0.0	12.0	25.6713	0.5712	0.0	222.6	ОК
360	Summer	11.9	0.0	11.9	25.6543	0.5542	0.0	214.4	ОК
480	Summer	11.6	0.0	11.6	25.6348	0.5347	0.0	205.1	OK
600	Summer	11.4	0.0	11.4	25.6148	0.5147	0.0	195.7	ОК
720	Summer	11.2	0.0	11.2	25.5942	0.4942	0.0	186.4	ОК
960	Summer	10.8	0.0	10.8	25.5582	0.4582	0.0	170.2	ОК
1440	Summer	10.0	0.0	10.0	25.4953	0.3952	0.0	142.7	ОК
30	Winter	12.2	0.0	12.2	25.6888	0.5888	0.0	230.9	ОК
60	Winter	12.6	0.0	12.6	25.7288	0.6288	0.0	250.7	ок
120	Winter	12.8	0.0	12.8	25.7483	0.6483	0.0	260.7	ОК
180	Winter	12.8	0.0	12.8	25.7423	0.6423	0.0	257.5	ОК
240	Winter	12.7	0.0	12.7	25.7313	0.6313	0.0	252.0	ОК
360	Winter	12.4	0.0	12,4	25.7078	0.6078	0.0	240.4	OK
480	Winter	12.1	0.0	12.1	25.6803	0.5803	0.0	226.7	OK
600	Winter	11.8	0.0	11.8	25.6513	0.5512	0.0	212.9	ОК
720	Winter	11.5	0.0	11.5	25.6228	0.5227	0.0	199.4	ОК
960	Winter	10.9	0.0	10.9	25.5712	0.4712	0.0	175.8	ок
1440	Winter	9.8	0.0	9.8	25.4833	0.3832	0.0	137.5	ОК

Dur	orm ation ins)	Rain (mm/hr)	Time-Peak (mins)	
30	Summer	94.04	36	
60	Summer	53.46	64	
120	Summer	30.38	120	
180	Summer	21.83	154	
240	Summer	17.27	184	
360	Summer	12.41	250	
480	Summer	9.82	318	
600	Summer	8.18	386	
720	Summer	7.05	454	
960	Summer	5.60	588	
1440	Summer	4.05	842	
30	Winter	94.04	35	
60	Winter	53.46	64	
120	Winter	30.38	118	
180	Winter	21.83	170	
240	Winter	17.27	194	
360	Winter	12.41	270	
480	Winter	9.82	344	
600		8.18	418	
	Winter	7.05	490	
960	Winter	5.60	628	
1440	Winter	4.05	894	

(c)1982-2006 Micro Drainage

White Young Green
Brigantine House
27-31 Cumberland Street
Bristol BS2 8NL
Date Jan 07
File pump lane 2007.SRC
Micro Drainage

West Southall
Pump Lane Link Road
Attenuation
Designed By RCB
Checked By
Source Control W.10.3

Rainfall Details

Region Return Period (years)		FEH	Rainfall	Model 100
Site Location	511550	179950	TQ 11550	79950
C (1km)				-0.025
D1 (1km)				0.300
D2 (1km)				0.315
D3 (1km)				0.233
E (1km)				0.308
F (1km)				2.562
Cv (Summer)				0.750
Cv (Winter)				0.840
Shortest Storm (mins)				30
Longest Storm (mins)				1440
Summer Storms				Yes
Winter Storms				Yes
Climate Change %				+30

Time / Area Diagram

Total Area (ha) = 0.480

Time	ime (mins) Area		Time	Time (mins)		
from:	com: to: (ha)		from:	From: to:		
0	4	0.240	4	8	0.240	

White Young Green
Brigantine House
27-31 Cumberland Street
Bristol BS2 8NL
Date Jan 07
File pump lane 2007.SRC

Micro Drainage

West Southall
Pump Lane Link Road
Attenuation
Designed By RCB
Checked By
Source Control W.10.3

Tank/Pond Details

Invert Level (m) 25.100 Ground Level (m) 26.500

Depth (m)	Area (m²)	Depth (m)	Area (m²)	Depth (m)	Area (m²)	Depth (m)	Area (m²)	Depth (m)	Area (m²)
0.00 0.10 0.20 0.30 0.40 0.50	297.0 329.0 362.0 394.0 427.0 459.0	0.60 0.70 0.80 0.90 1.00	491.0 524.0 556.0 589.0 621.0 621.0	1.20 1.30 1.40 1.50 1.60	621.0 621.0 621.0 621.0 621.0	1.80 1.90 2.00 2.10 2.20 2.30	621.0 621.0 621.0 621.0 621.0	2.40 2.50	621.0 621.0

Pipe Outflow Control

Pipe Diameter	(m) 0.100	Roughness (mm)	0.600	Invert Level	(m) 25.100
Slope (1:x)	100.0	Entry Loss Coef	0.500		
Length (m)	10.000	Coef of Contraction	0.600		

Weir / Flume Overflow Control

Discharge Coef 0.544 Width (m) 1.000 Crest Level (m) 26.000

White Young Green
Brigantine House
27-31 Cumberland Street
Bristol BS2 8NL
Date Jan 07
File pump lane 2007.SRC
Micro Drainage

West Southall
Pump Lane Link Road
Attenuation
Designed By RCB
Checked By
Source Control W.10.3

Summary of Results for 100 year Return Period

Storm Duration (mins)	Maximum Control (1/s)	Maximum Overflow (1/s)	Maximum Outflow (1/s)	Maximum Water Level (m OD)	Maximum Depth (m)	Overflow Volume (m³)	Maximum Volume (m³)	Status	
30 Summe	r 10.3	0.0	10.3	25.5238	0.4237	0.0	155.0	ОК	
60 Summe	r 10.3	0.0	10.3	25.5493	0.4492	0.0	166.2	ОК	
120 Summe	r 10.3	0.0	10.3	25.5538	0.4537	0.0	168.1	OK	1
180 Summe	r 10.3	0.0	10.3	25.5443	0.4442	0.0	164.0	ОК	İ
240 Summe	r 10.3	0.0	10.3	25.5348	0.4347	0.0	159.6	O K	i
360 Summe	r 10.3	0.0	10.3	25.5123	0.4122	0.0	149.9	O K	
480 Summe	r 10.3	0.0	10.3	25.4883	0.3882	0.0	139.7	o K	ļ
600 Summe:	r 10.3	0.0	10.3	25.4643	0.3642	0.0	129.7	ок	
720 Summe:	r 10.3	0.0	10.3	25.4418	0.3417	0.0	120.3	0 K	
960 Summe	r 10.3	0.0	10.3	25.4023	0.3022	0.0	104.5	ОК	
1440 Summe:	r 9.8	0.0	9.8	25.3428	0.2427	0.0	81.7	ОК	
30 Winte	r 10.3	0.0	10.3	25.5693	0.4692	0.0	175.1	ОК	
60 Winte	10.3	0.0	10.3	25.5993	0.4992	0.0	188.6	O K	
120 Winte:	r 10.3	0.0	10.3	25.6093	0.5092	0.0	193.2	ОК	
180 Winte:	r 10.3	0.0	10.3	25.5972	0.4972	0.0	187.8	ОК	Ť
240 Winter	c 10.3	0.0	10.3	25.5832	.0.4832	0.0	181.4	O K	İ
360 Winter	10.3	0.0	10.3	25.5522	0.4522	0.0	167.4	O K	1
480 Winter	10.3	0.0	10.3	25.5178	0.4177	0.0	152.3	OK	Ì
600 Winter	10.3	0.0	10.3	25.4828	0.3827	0.0	137.3	ОК	
720 Winter	10.3	0.0	10.3	25.4488	0.3487	0.0	123.3	ок	
960 Winter	10.3	0.0	10.3	25.3918	0.2917	0.0	100.5	ОК	
1440 Winter	9.5	0.0	9.5	25.3123	0.2122	0.0	70.4	ОК	-

Storm Duration (mins)		Rain (mm/hr)	Time-Peak (mins)
30	Summer	94.04	35
60	Summer	53.46	64
120	Summer	30.38	120
180	Summer	21.83	146
240	Summer	17.27	178
360	Summer	12.41	244
480	Summer	9.82	312
600	Summer	8.18	378
720	Summer	7.05	442
	Summer	5.60	568
	Summer	4.05	810
30	Winter	94.04	35
60	Winter	53.46	64
120	Winter	30.38	118
180		21.83	170
	Winter	17.27	190
	Winter	12.41	266
	Winter	9.82	340
600	Winter	8.18	408
720	Winter	7.05	474
960	Winter	5.60	598
1440	Winter	4.05	828

White Young Green		Page 2
Brigantine House	West Southall	
27-31 Cumberland Street	Pump Lane Link Road	
Bristol BS2 8NL	Attenuation	
Date Jan 07	Designed By RCB	
File pump lane 2007.SRC	Checked By	
Micro Drainage	Source Control W.10.3	

Rainfall Details

Region Return Period (years)		FEH	Rainfall Model
Site Location	511550	179950	TQ 11550 79950
C (1km)			-0.025
D1 (1km)			0.300
D2 (1km)			0.315
D3 (1km)			0.233
E (1km)			0.308
F (1km)			2.562
Cv (Summer)			0.750
Cv (Winter)			0.840
Shortest Storm (mins)			30
Longest Storm (mins)			1440
Summer Storms			Yes
Winter Storms			Yes
Climate Change %			+0

Time / Area Diagram

Total Area (ha) = 0.480

Time	(mins)	Area	Time	(mins)	Area
from:	to:	(ha)	from:	to:	(ha)
0	4	0.240	4	8	0.240

White Young Green
Brigantine House
27-31 Cumberland Street
Bristol BS2 8NL
Date Jan 07
File pump lane 2007.SRC

Micro Drainage

West Southall
Pump Lane Link Road
Attenuation
Designed By RCB
Checked By
Source Control W.10.3

Tank/Pond Details

Invert Level (m) 25.100 Ground Level (m) 26.500

Depth	Area	Depth	Area	Depth	Area	Depth	Area	Depth	Area
(m)	(m²)	(m)	(m²)	(m)	(m²)	(m)	(m²)	(m)	(m²)
0.00 0.10 0.20 0.30 0.40 0.50	297.0 329.0 362.0 394.0 427.0 459.0	0.60 0.70 0.80 0.90 1.00	491.0 524.0 556.0 589.0 621.0 621.0	1.20 1.30 1.40 1.50 1.60 1.70	621.0 621.0 621.0 621.0 621.0	1.80 1.90 2.00 2.10 2.20 2.30	621.0 621.0 621.0 621.0 621.0	2.40 2.50	621.0 621.0

Hydro-Brake Outflow Control

Design Head (m) 0.750 Hydro-Brake Type MD5 Invert Level (m) 25.100 Design Flow (1/s) 11.5 Diameter (mm) 147

Depth (m)	Flow (1/s)	Depth (m)	Flow (1/s)	Depth (m)	Flow (1/s)	Depth (m)	Flow (1/s)	Depth (m)	Flow (1/s)
0.10 0.20	4.9 9.3	0.80 1.00	11.7 13.0	2.00	18.3 19.2	4.00 4.50	25.9 27.5	7.00 7.50	34.3 35.5
0.30	10.3	1.20	14.2	2.40	20.1	5.00	29.0	8.00	36.6
0.40	10.2	1.40	15.3	2.60	20.9	5.50	30.4	8.50	37.8
0.50	10.3	1.60	16.4	3.00	22.4	6.00	31.7	9.00	38.9
0.60	10.6	1.80	17.4	3.50	24.2	6.50	33.0	9.50	39.9

Weir / Flume Overflow Control

Discharge Coef 0.544 Width (m) 1.000 Crest Level (m) 26.000

White Young Green

Brigantine House
27-31 Cumberland Street
Bristol BS2 8NL
Date Jan 07
File pump lane 2007.SRC
Micro Drainage

Page 1

West Southall
Pump Lane Link Road
Attenuation
Designed By RCB
Checked By

Source Control W.10.3

Summary of Results for 100 year Return Period (+30%)

Dur	orm ation ins)	Maximum Control (1/s)	Maximum Overflow (1/s)	Maximum Outflow (1/s)	Maximum Water Level (m OD)	Maximum Depth (m)	Overflow Volume (m ³)	Maximum Volume (m³)	Status
30	Summer	10.4	0.0	10.4	25.6343	0.5342	0.0	204.8	ОК
60	Summer	10.5	0.0	10.5	25.6703	0.5702	0.0	222.0	ОК
120	Summer	10.6	0.0	10.6	25.6863	0.5863	0.0	229.7	ОК
180	Summer	10.5	0.0	10.5	25.6783	0.5783	0.0	225.8	ОК
240	Summer	10.5	0.0	10.5	25.6678	0.5677	0.0	220.8	ОК
360	Summer	10.4	0.0	10.4	25.6458	0.5457	0.0	210.3	ОК
480	Summer	10.3	0.0	10.3	25.6218	0.5217	0.0	199.1	ок
600	Summer	10.3	0.0	10.3	25.5977	0.4977	0.0	187.9	ОК
720	Summer	10.3	0.0	10.3	25.5732	0.4732	0.0	176.9	ок
960	Summer	10.3	0.0	10.3	25.5293	0.4292	0.0	157.3	ок
1440	Summer	10.3	0.0	10.3	25.4498	0.3497	0.0	123.7	0 K
30	Winter	10.6	0.0	10.6	25.6888	0.5888	0.0	230.9	0 K
60	Winter	10.8	0.0	10.8	25.7298	0.6298	0.0	251.3	ОК
120	Winter	10.9	0.0	10.9	25.7518	0.6518	0.0	262.3	ОК
180	Winter	10.9	0.0	10.9	25.7473	0.6473	0.0	260.0	ок
240	Winter	10.8	0.0	10.8	25.7328	0.6328	0.0	252.7	ок
360	Winter	10.6	0.0	10.6	25.7043	0.6043	0.0	238.7	ок
480	Winter	10.5	0.0	10.5	25.6723	0.5722	0.0	223.1	O K
600	Winter	10.4	0.0	10.4	25.6388	0.5387	0.0	207.0	O K
720	Winter	10.3	0.0	10.3	25.6042	0.5042	0.0	190.9	ок
960	Winter	10.3	0.0	10.3	25.5382	0.4382	0.0	161.2	OK
1440	Winter	10.3	0.0	10.3	25.4208	0.3207	0.0	111.9	O K

Storm Duration (mins)		Rain (mm/hr)	Time-Peak (mins)
30	Summer	94.04	36
60	Summer	53.46	64
120	Summer	30.38	122
180	Summer	21.83	166
240	Summer	17.27	194
360	Summer	12.41	258
480	Summer	9.82	326
600	Summer	8.18	392
720	Summer	7.05	460
960	Summer	5.60	592
1440	Summer	4.05	840
30	Winter	94.04	36
60	Winter	53.46	64
120	Winter	30.38	120
180	Winter	21.83	174
240	Winter	17.27	222
360	Winter	12.41	278
480	Winter	9.82	354
600	Winter	8.18	428
720	Winter	7.05	500
960	Winter	5.60	636
1440	Winter	4.05	880

(c)1982-2006 Micro Drainage

White Young Green Brigantine House 27-31 Cumberland Street Bristol BS2 8NL Date Jan 07 File pump lane 2007.SRC Micro Drainage	West Southall Pump Lane Link Road Attenuation Designed By RCB Checked By Source Control W.10.3	Page 2 Page 2 Decrease of the control of the cont
Micro Drainage	Source Control W.10.3	
THOIO DIGHTAGO		

Rainfall Details

Region Return Period (years)			Rainfall Model 100
Site Location	511550	179950	TQ 11550 79950
C (1km)			-0.025
D1 (1km)			0.300
D2 (1km)			0.315
D3 (1km)			0.233
E (1km)			0.308
F (1km)			2.562
Cv (Summer)			0.750
Cv (Winter)			0.840
Shortest Storm (mins)			30
Longest Storm (mins)			1440
Summer Storms			Yes
Winter Storms			Yes
Climate Change %			+30

Time / Area Diagram

Total Area (ha) = 0.480

Time	(mins)	Area	Time	(mins)	Area
from:	to:	(ha)	from:	to:	(ha)
0	4	0.240	4	8	0.240

(c)1982-2006 Micro Drainage

White Young Green

Brigantine House West Southall
27-31 Cumberland Street Pump Lane Link Road
Bristol BS2 8NL Attenuation

Date Jan 07 Designed By RCB
File pump lane 2007.SRC Checked By

Micro Drainage Source Control W.10.3

Tank/Pond Details

Invert Level (m) 25.100 Ground Level (m) 26.500

Depth	Area	Depth (m)	Area	Depth	Area	Depth	Area	Depth	Area
(m)	(m²)		(m²)	(m)	(m²)	(m)	(m²)	(m)	(m²)
0.00 0.10 0.20 0.30 0.40 0.50	297.0 329.0 362.0 394.0 427.0 459.0	0.80 0.90 1.00	491.0 524.0 556.0 589.0 621.0 621.0	1.60	621.0 621.0 621.0 621.0 621.0 621.0	1.80 1.90 2.00 2.10 2.20 2.30	621.0 621.0 621.0 621.0 621.0	2.40 2.50	621.0 621.0

Hydro-Brake Outflow Control

Design Head (m) 0.750 Hydro-Brake Type MD5 Invert Level (m) 25.100 Design Flow (1/s) 11.5 Diameter (mm) 147

Depth (m)	Flow (1/s)	Depth (m)	Flow (l/s)	Depth (m)	Flow (1/s)	Depth (m)	Flow (1/s)	Depth (m)	Flow (l/s)
0.10 0.20	4.9 9.3	,	11.7 13.0	2.00	18.3 1 9.2	4.00	25.9 27.5	7.00 7.50	34.3 35.5
0.30	10.3	1.20	14.2	2.40	20.1	5.00	29.0	8.00	36.6
0.40	10.2	1.40	15.3	2.60	20.9	5.50	30.4	8.50	37.8
0.50	10.3	1.60	16.4	3.00	22.4	6.00	31.7	9.00	38.9
0.60	10.6	1.80	17.4	3.50	24.2	6.50	33.0	9.50	39.9

Weir / Flume Overflow Control

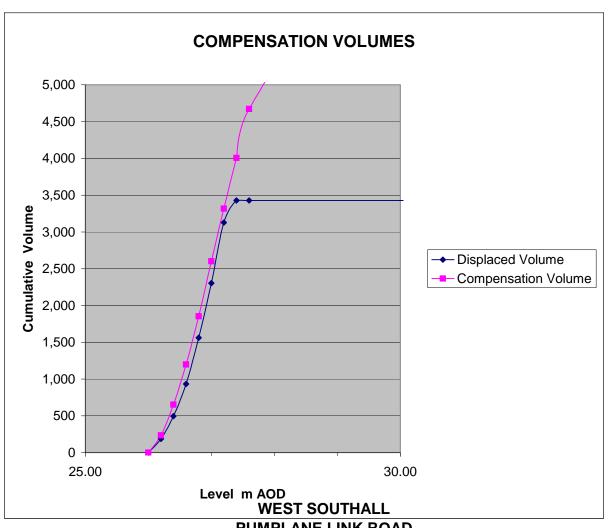
Discharge Coef 0.544 Width (m) 1.000 Crest Level (m) 26.000

White Young Green		Page 1
Portland Square		
22-24 Portland House		W Mary
Bristol BS2 8RZ		
Date	Designed By	
File	Checked By	
CADS	Source Control W.9.4	

IoH 124 Mean Annual Flood

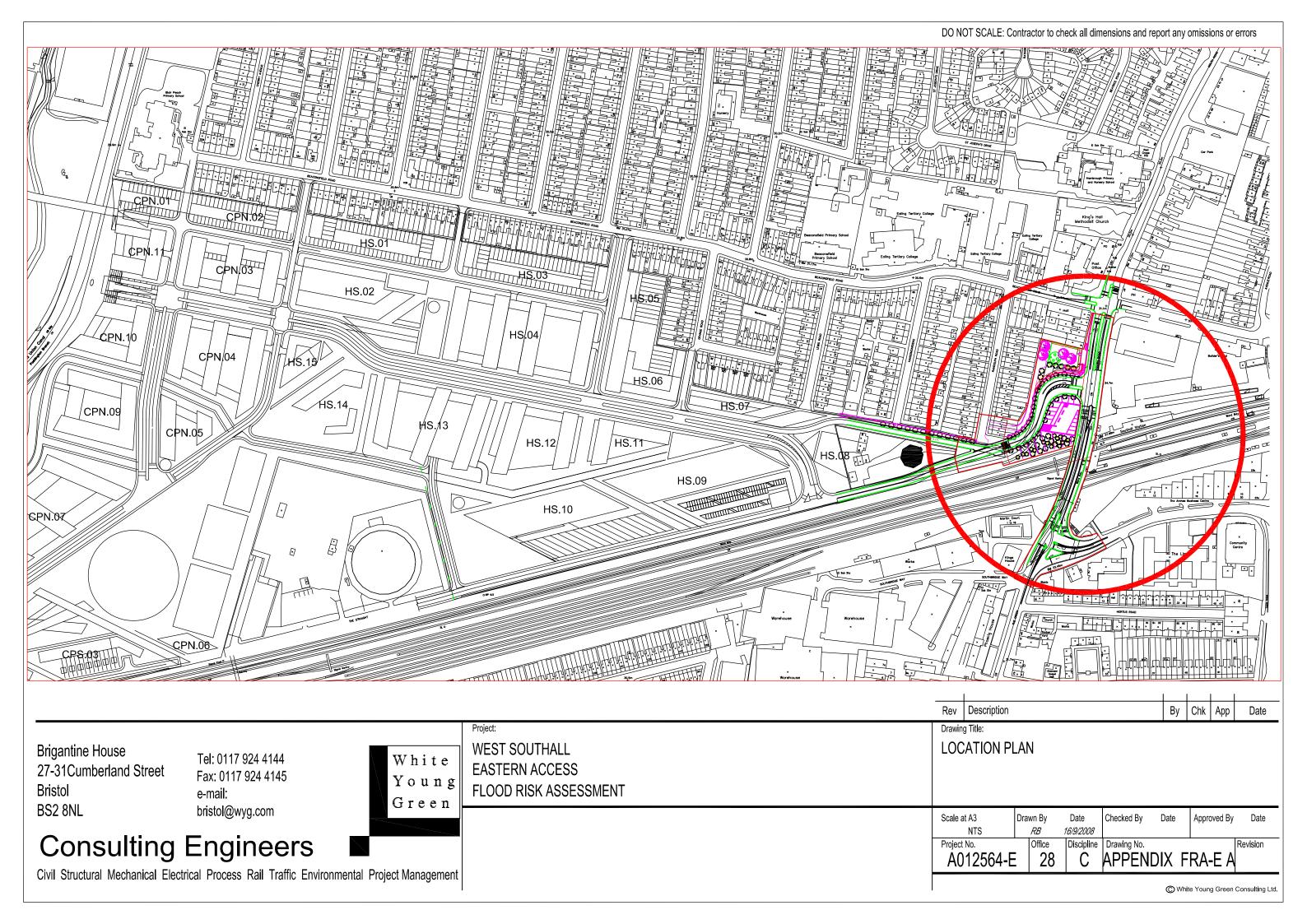
Input

Return Period (years) 100 Soil 0.500 Area (Ha) 1.000 Urban 0.000 SAAR (mm) 641.000 Region Number 6.000

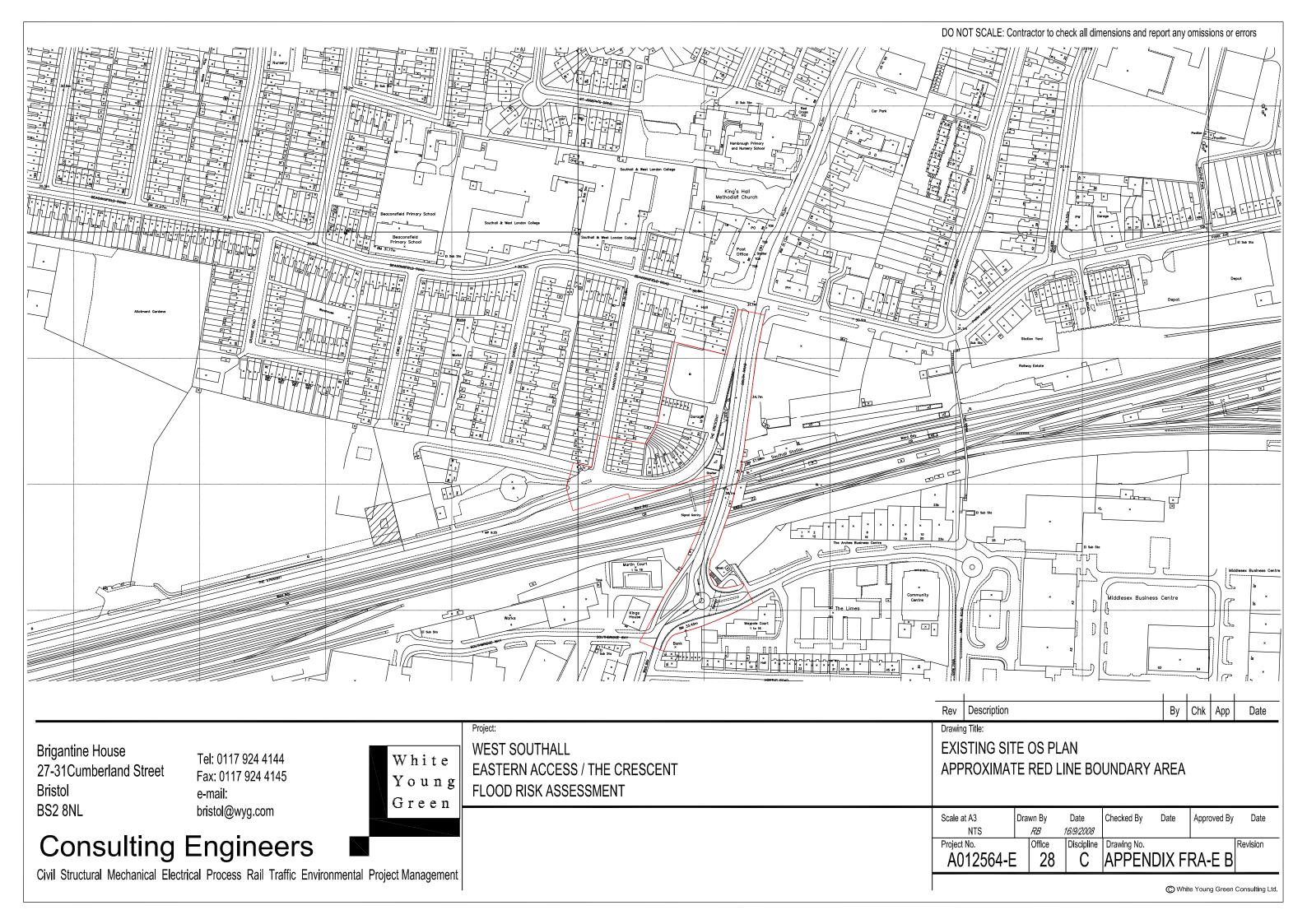

Results

QBAR Rural (m3/s) 0.008 Q 100 years (m3/s) 0.024 QBAR Urban (m3/s) 0.008

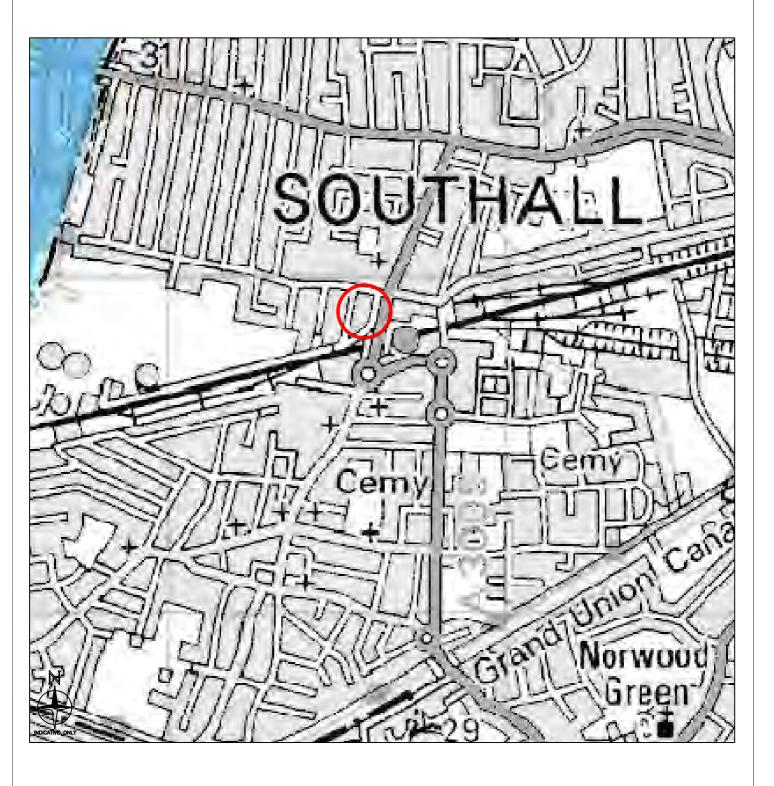
APPENDIX FRA 6.3


Compensation Volumes

level	Increr	mental	Cumi		
	Displacement volume	Compensation Volume	Displacement volume	Compensation Volume	
m AOD	m ³	m ³	m ³	m ³	
33.00	0	7,627	3,427	12,298	
27.60	0	665	3,427	4,671	
27.40	300	690	3,427	4,006	$Q_{100+20\%} = 27.27$
27.20	824	715	3,127	3,316	
27.00	741	747	2,303	2,601	$Q_{100} = 27.06$
26.80	630	655	1,562	1,854	
26.60	437	546	932	1,199	
26.40	308	418	495	653	
26.20	187	235	187	235	
26.00	0	0	0	0	


PUMPLANE LINK ROAD COMPENSATION STORAGE VOLUMES

APPENDIX FRA-E A Location Plan


APPENDIX FRA-E B

Existing Site Plan

APPENDIX FRA-E C

Flood Zone Map

Brigantine House 27-31Cumberland Street Bristol BS2 8NL

Tel: 0117 924 4144 Fax: 0117 924 4145 e-mail: bristol@wyg.com White Young Green WEST SOUTHALL EASTERN ACCESS - THE CRESCENT FLOOD RISK ASSESSMENT Rev Description
Drawing Title:
ENVIRONMENT AGENCY
FLOOD ZONE MAP

White Young Green Consulting Li

By Chk App Date

Consulting Engineers ■	
Civil Structural Mechanical Electrical Process Rail Traffic Environmental Project N	/lanagement

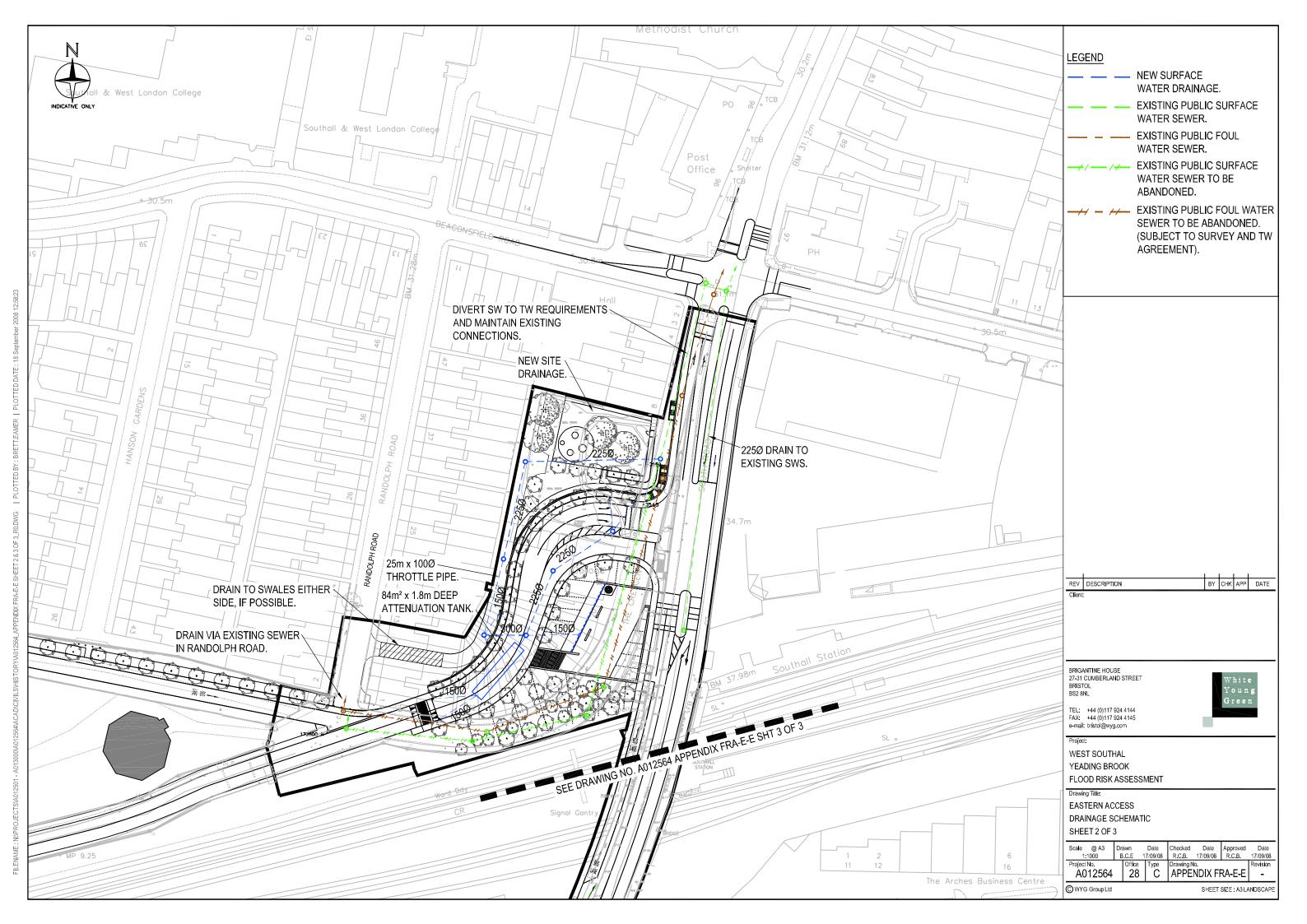
APPENDIX FRA-E D

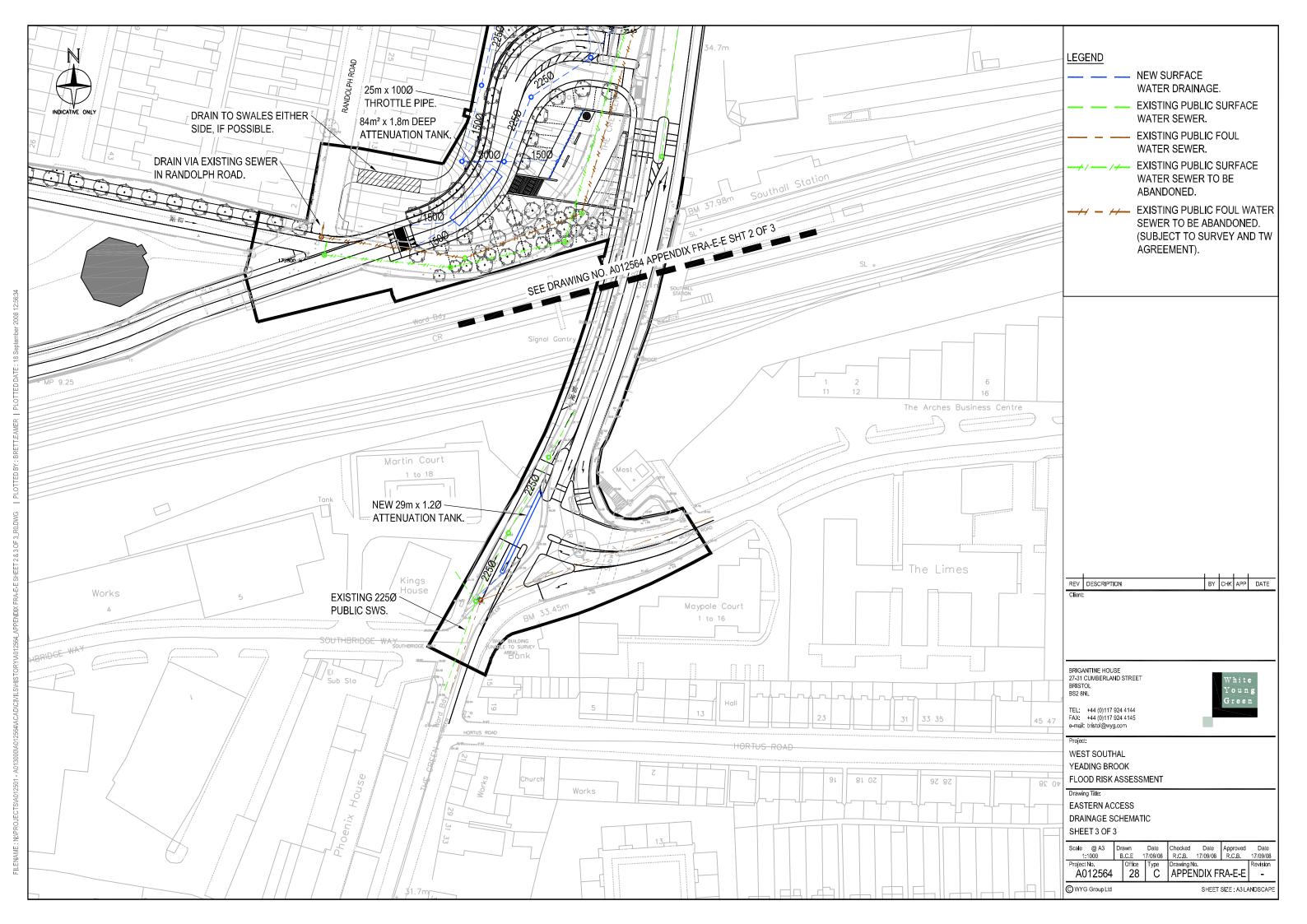
Thames Water Sewer Plans

The position of the apparatus shown on this plan is given without obligation and warranty, and the accuracy cannot be guaranteed. Service pipes are not shown but their presence should be anticipated. No liability of any kind whatsoever is accepted by Thames Water for any error or omission. The actual position of mains and services must be verified and established on site before any works are undertaken.

100 metre intervals

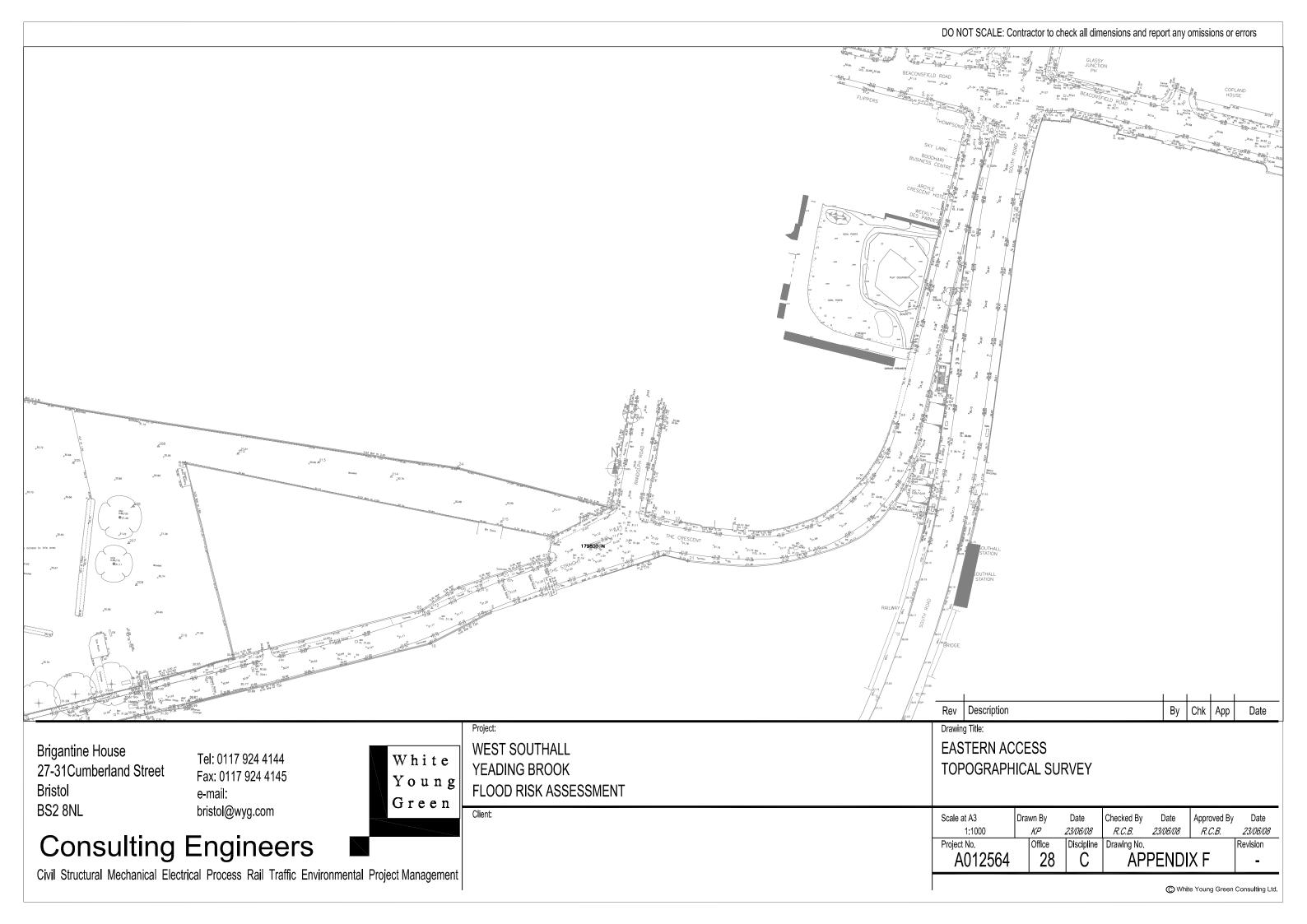
EAGLE hardcopy facility - Normal Map.


The plot is centred on (512626, 179935), which is in TQ1279NE. Printed on 24 November 2005 at 9:58:24 by OARTHURS.


Comments:

SEWER

APPENDIX FRA-E E


Drainage Schematic

APPENDIX FRA-E F

Topographic Survey

APPENDIX FRA-E G

Calculations

Calculation Cover Sheet

Brigantine House 27-31 Cumberland street Bristol

BS2 8NL Tel: 0117 9244144

Fax: 0117 9244145

Office	:	Bristol	Prepar	ed by:	RCE	
Divisio	n:	C&S	Date:		Sept	: 08
Projec	t No :	A0112564				
	t Title :	West Southall -	East Access			
Client	<u>: </u>	National Grid Pr	operty Holdings			
Conte	nts :					
Set N	lo.		Details			Page No.s
		Undevelo	ped green field Run	off		1
			Areas			2-4
		Zoi	ne 2 attenuation			5 - 10
		Zọi	ne 3 attenuation			11- 14
			Key plan			15
ļ						
		 				
	n Philosop	*				
⊨stabli	sh undevel	oped green field run off rate	es using IOH 124 me	ethod (fron	n Micro drainage	e programme)
Provide	e attenuatio	on to undeveloped greenfiel	ld rate for any increa	ise in impe	ermeable area (2	one 4)
vvnere	practical re	educe new development to	undeveloped Green	field rates	as per EA reque	est (Zone 2)
					(Continue on se	parate sheet if necessary)
Status	:	Preliminary 🗸	Working		(Continué on Se	parate sneet it necessary)
		, <u> </u>				
Checke	ed by :	RCB Date: S	Sept 08 Approve	ed by :		Date :
Revisi	ons :					
Rev	Date	Description	n	Checked	Approved	Pages Revised
						300 1101 1000
		<u> </u>			-	
					<u> </u>	
		· 				
		<u> </u>				
			<u> </u>		!	1
		I				Ţ ——· —
		·	<u> </u>			<u> </u>

White Young Green
Brigantine House
27-31 Cumberland Street
Bristol BS2 8NL
Date 21/8/08
File
Micro Drainage

West Southall East Access

Designed By RCB Checked By Source Control W.11.2

IH 124 Mean Annual Flood

Input

Return Deriod (years)	100	Soil	0.500
Area (Na)	1.198	Urban	0.000
SAAR (mm)	841.000	Region Number	6

	Resu	1/s	
		Rural Orban	9.0 9.0
Q	100	years	28.6
	1 2 5 10 20 25 30 50	years years years years years years years years years	7.6 7.9 11.5 14.5 18.0 19.3 20.3 23.5
20000	100 200 250 1000	years years years	29.8 33.7 35.3 46.3

White Young Green

Consulting Engineers and Project Managers

Project NO A012564 -E

Galculation Sheet No

Office

Division

			Division
Pr	oject Title WEST SOUT HAL	L	Prepared by R_L B
W	ork Section EAST ACCESS		Date 5001-04
/	North of Ruilnay	Existing	
- 1	mpermentie	m ²	
	South Roud.	25 85	
	The Cresent	1421	
	The straight Juntien	1037	
	Pluy Area	294	
	Garage	796	
	Residential -Treine	61N. 845	
	Residential - Rundo	lphRd 444	7472
1	Permeuble		
	Flay Areu	1474	
	Buck Garlens	651	
	Front Gardens	211	
	south strip	455	
	The strong Ht I not.	104	
	Embunk ment	316	ļ
	M 13 C.	<u> 86</u>	3301
	7	Total,	10847
			•

White Young Green

Consulting Engineers and Project Managers

White Young Green

Project No *A012564-E*

Calculation Sheet No

3

Office

Division

		Division
Project Title WEST SOUTHALL		Prepared by R C B
 Work Section EAST ACC ESS		Date Sout 04
North of Railway - Proposed Impermerble	m ²	
Creminder of the crescal	120	
upper Access	1236	-
Lower Alless	560	
The Struight Junction	1026	
Residents Micess	649	
PLAZZA	467	
stairs to Plazza	73_	6735
Permenble.		
Pluy Space	607	
North areu	430	!
Access Roud Borden	190	
Pluzza West	447	
Plazza Edst	119	
Southern Strip	1540	
Southern Block	323	
Southern by 1862	160	
Mise foot putes et draining -	222	4038
Total		10,723

White Young Green

Consulting Engineers and Project Managers

White Young Green

Project No *A O 12564 - E*-

Calculation Sheet No

4

Office

Division

Project Title WEST SOUTH MLL	Prepared by RCB
Work Section EAST ACCESS.	Date Scot 046
Effective Proposed Catchment ANNS.	
Zone Location Imp Perm	Total
1 Randolph Rund. 1026 615	1641
2 New Access/ 3099 3201 The cresent	6300
3 South Rord (N) 2744 -	2744
4 South Road (6) 4000 -	4000
For Zone 2 to Mutch IDH 124 flow	ı. 3
1:2 yr = 6.6 4/5/pu -> 42 6/5	
1:30yr = 17.0 4/5/h4 -> 10.7 4/5	
1:100yr =23.9 1/5/ha -> 15.14/5.	
	1

White Young Gree	ń
Brigantine House	
27-31 Cumberland	Street
Bristol BS2 8NL	
Date sept 08	
File throttle pipe so	<u>c</u> _
Micro Drainage	

West Southall
East Access
Zone 2
Designed By RCB
Checked By
Source Control W.11.2

Summary of Results for 100 year Return Period (+30%)

Storm Duration (mins)	Maximum Control (1/s)	Maximum Overflow (1/s)	Maximum Outflow (1/s)	Maximum Water Level (m OD)	Maximum Depth (m)	Overflow Volume (m ³)	Maximum Volume (m³)	Status
15 Summer	13.0	0.0	13.0	30,6322	1.3622	0.0	114.4	CX
30 Summer	13.6	0.0	13.6	30.7602	1,4902	0.3	125.3	O.K
60 Summer		0.0	13.9	30.8232	1.5532	0.0	130.5	οк,
120 Summer	13.8	0.0	13,8	30.7987	1,5287	0.0	128.4	эк
120 Sunder 1 180 Summer	13.6	0.0	13.6	30.7542	1.4842	0.0	124.7	0 X
240 Summer		0.0	13.4	30.7002	1.4302	0.0	120.1	C K '
380 Summer		0,0	12.8	30,5858	1.3157	0.0	110.5	ОК
490 Summer		0.0	12.3	30.4783	1,2093	0.0	101.5	ок,
600 Summer		0.0	11.8	30.3833	1,1133	0.0	93.5	эк
720 Summer		0.0	11.3	30.2993	1.0293	0.0	88.4	0 K
960 Summer		ŏ.ŏ	10.4	30,1463	0.8763	0.0	73.6	C K
1440 Summer		č.š	9.0	29.9313	0.8613	0.0	ან.5	OK
2180 Summer		5.5	7.5	29.7333	0.4632	5.0	38.9	οк
2880 Summer		0.0	6,4	29,6136	0.3437	0.0	28.3	эк
4330 Summer		0.0	4.5	29.4763	0.2062	0.0	19.3	0 4
j 5760 Summer		0.0	4.0	29,4098	0.1398	0.0	11.7	C K
7200 Suprer		0.0	3.4	29.3648	0,0948	0.0	9.0	0 K
8640 Summer		5.5	2.9	29.3563	0.0863	0.0	7.2	0 K J
10080 Summer		0.0	2.8	29.3498	0.0797	0.0	6.7	0 X
15 Winter		0.0		30.9022	1.5322	0.0	128.7	CKI
l 30 Winter	_	0.0	•	30.9537	1,6837	0.0	541.4	FIOCD RISK
60 Winter		0.3	14.9	31.0392	1,7692	0.0	148.6	FLOOD RISK
120 Winter	- · · · · - · · · -				1.7347	0.0	145.7	FLCOD RISK
120 Winter		0.0		30,9407		0.0	140.4	FLOOD RISK
. 240 Winter		0.0		30,8607	1.3907	0.0	133.6	СК
360 Winser	-	0.0			1.4232	0.0		ок,
	_		_	•		0.0	108.8	эк ј
480 Winter	_2.0	0.0	12.0	2,,,,				- 1

Storm Duration (mins)	Rain (mm/hr)	Time-Peak (mins)
15 Summer	211,49	15
30 Summer	121,66	32
60 Summer	69.93	60
120 Summer	40.27	92
180 Supres	29.14	126
240 Summer	23.17	160
360 Submer	16.77	228
400 Summer	13,33	298
600 Summer	11.15	362
720 Summer	9.84	426
960 Տա ղ տեբ	7,59	550
1440 Summer	5.42	794
2160 Summer	3.86	1152
2850 Summer	3.04	1504
4320 Summer	2,13	2200
5760 Summer	1.63	2944
7200 Summer	1.38	3672
8640 Summer	1.16	4369
10080 Summer	1.01	5104
15 Winter	211.48	18
30 Winter	120,68	32
60 Winter	89.99	60
130 Winter	40.27	96
180 Winter	29.14	134
240 Winter	23,17	172
360 Winter	16.77	246
480 Whater	13.33	316

©1982-2008 Micro Drainage

White Young Green

Brigantine House
27-31 Cumberland Street
Bristol BS2 8NL
Date sept 08
File throttle pipe src
Micro Drainage

Page 2

West Southall
East Access
Zone 2
Designed By RCB
Checked By
Micro Drainage
Source Control W.11.2

Summary of Results for 100 year Return Period (+30%)

	Storm Duration (mins)	Maximum Control (1/s)	Maximum Overflow (1/s)	Maximum Outflow (1/s)	Maximum Water Level (m OD)	Maximum Depth (m)	Overflow Volume (m°)	Maximum Voluma (m³)	Status
	raa waasaa	11.9	0.0	11.9	30.4049	1,1348	0.0	95.3	СК
	600 Winter		0.0	11.2	30.2888	1.0188	0.0	35,6	O K
	720 Winter	11.2			30.0903	0.8203	0.0	68.9	ОК
	960 Winter	10,1	0.0	10.1	* *	0.5507	0.0	48.9	5 K I
	[440 Winter	3.3	0.0	8.3	29,9298	•		29.2	οκ
1	2160 Winter	6.5	0.0	2.3	23.6178	0.3477	3.0		I
	2000 Winter	5.3	0.0	5.3	29.5073	0.2372	0.0	19.9	C K I
		3.8	0.0	3.9	29,3983	0,1283	0.0	10.8	OK
1	4320 Winter			3.0	29.3578	0.0878	0.0	7.4	O K
	5760 Winter	3.0	0.0		29.3378	0.0783	0.0	6.6	эк
	7200 Winter	2.5	0.0	2.5				5.8	C R
-	8640 Winter	2.:	0.0	2,1	29,3398	0.0698	0.0		0 3
	10090 Winter	1.5	0.0	1.9	29.3333	0.0632	0.0	5.3	0 2

Storm Duration (mins)	Rain (mm/hr)	Time-Peak (mins)
600 Winter 720 Winter 980 Winter 1440 Winter 2160 Winter 2880 Winter 4320 Winter 5760 Winter 7200 Winter 8640 Winter 10080 Winter	11.15 9.84 7.59 5.42 3.86 3.04 2.13 1.65 1.36 1.16	384 450 578 822 1188 1528 2248 2872 3624 4408 5088

©1982-2008 Micro Drainage

. . .		
White Young Green		
Brigantine House	West Southall	
27-31 Cumberland Street	East Access	
Bristol BS2 8NL	Zone 2	
Date sept 08	Designed By RCB	
File throttle pipe.src	Checked By	
Micro Drainage	Source Control W.11.2	

Rainfall Details

Region		FEII	Rainfall Model
Return Perfod (years)	510535	120050	100 mo 10550 70350
Site location C (1km)	510550	179250	то 10550 79250 -0.026
			0.322
D1 (1km)			
D2 (1km)			0.287
□3 (1km)			0.240
E (1km)			0.310
F (1km)			2.560
Cv (Summer)			0.750
Cv (Winter)			0.840
Shortest Storm (mins)			13
Longest Storm (mins)			10090
Summer Storms			Yes
Winter Storms			Yes
Climate Change %			+30

Time / Area Diagram

Total Area (ha) - 0.310

Time	(mins)	Area
from:	to:	(ha)
0	4	0.310

White Young Green
Brigantine House
27-31 Cumberland Street
Bristol BS2 8NL
Date sept 08
File throttle pipe.src

Micro Drainage

West Southall
East Access
Zone 2
Designed By RCB
Checked By

Source Control W.11.2

Tank/Pond Details

Invert Level (m) -23.270 Ground Level (m) -31.100

Depth	Area	Depth	Area	Depth	Area (m²)	Depth	Area	Depth	Area !	Depth	Area
(m)	(m²)	(m)	(m²)	(m)		(m)	(m²)	(m)	(m²)	(m)	(m²)
0.10 0.20 0.30	84.0 84.0 84.0	0.60 0.70 0.80	94.0 94.0 84.0		84.0 84.0 84.0	1.60 1.70 1.80	84.0 84.0 84.0	2,10 2,20 2,30	94.0 84.0 54.0	2.50	84.0

Pipe Outflow Control

Pipe Diameter (m)	0.100	Roughness (mm)	0.800	Invert Level (m)	29.270
Slope (1:x)	272.0	Entry Loss Coef	0.500		
Length (m)	25,000	Coef of Contraction	0.600		

Weir / Flume Overflow Control

Discharge Coof 0.544 Width (m) 1.000 Crest Level (m) 31.060

©1982-2008 Micro Drainage

White Young Green
Brigantine House
27-31 Cumberland Street
Bristol B\$2 8NL
Date sept 08
File throttle pipe.src
Micro Drainage
West Southall
East Access
Zone 2
Designed By RCB
Checked By
Source Control W.11.2

Summary of Results for 2 year Return Period

Dura	orm tion .ns)	Maximum Control (1/s)	Maximum Overflow (1/s)	Maximum Outflow (1/s)	Maximum Water Level (m OD)	Maximum Depth (m)	Overflow Volume (m ³)	Maximum Volume (m³)	Status
15	Summer	3.3	0.0	٥.٥	29.5243	0.2542	0.0	21.4	о к
30	Summer	5.9	0.0	5.9	29.5563	0.2362	0.0	24.0	ОК
60	Summer	€.1	0.0	6.1	39.5773	0.3072	0.0	05.8	ОК
120	Summer	ნ.1	0.0	6.1	29.5838	0.3137	0.0	26.3	ОК
180	Summer	€.0	0.0	6.0	29.5743	0.3042	0.0	25.€	ОК
240	Summer	5.9	0.0	5.9	2 9 .5608	0.2907	0.0	24.4	0 K
360	Summer	5.6	0.0	5.6	29,5318	0.2617	0.0	22,0	эк
480	Summer	ა.შ	0.0	5.3	29.8053	0.2332	0.0	19.8	эк
600	Summer	5.0	0.0	5.0	29.4833	0.2132	0.0	17.9	эк
720	Simmer	4.8	0.0	4.8	29.4638	0.1937	0.0	16,3	эк
960	Sammer	4.3	0.0	4.3	29.4313	0.1613	0.0	13.5	эк
1440	Summer	3.7	0.0	3.7	29.3883	0.1183	0.0	9.9	эκ
2160	Summer	3.1	0.0	3.1	29.3598	0.0999	0.0	7.5	0 K
2880	Summer	2.6	0.0	2.6	29.3498	0.0797	0.0	6.7	эк
4320	Sammer	1.9	0.0	1.9	29.3343	0.0642	0.0	5.4	эк
5760	Summer	1.5	0.0	1.5	29.3263	0.0582	0.0	4.7	0 K
7200	Summer	1.3	0.0	1.3	29,3223	0.0523	0.0	4,4	ок
8840	Summer	1.1	0.0	1.1	29.3193	0.0492	0.0	4.1	0 K
10080	Summer	1.0	0.0	1.0	29.3168	0.0487	0.0	3.9	0 K
15	Winter	5.9	0.0	5.9	29.5563	0.2862	0.0	24,3	0.8
30	Winter	6.3	0.0	€.3	29.5943	0.3242	0.0	27.2	οк
60	Winter	€.4	0.0	6.4	29.6143	0.3442	0.0	20.9	0.5
120	Winter	6.4	0.0	6.4	29.6128	0.3427	<u>G. G</u> .	28,8	0.3
180	Winter	6.2	.0.0	6.2	29,5928	0.3227	0.0	27.1	CK
	Winter	6.0	0.0	8.0	29.5693	0.2992	0.0	25.2	0.6
360	Winter	5.5	0.0	5.5	29.5248	0.2547	0.0	21.4	0.8
480	Winter	5.1	0.0	5.1	29,4878	0.2177	0.0	18.3	C K

STOIM		Rain	Time-Peak
	tion	(mm/hr)	(mins)
(mı	ns)		
	_		
1.5		42.09	17
30		25.98	30
80		16.04	46
	Submer	9.90	90
	Summer	7.46	114
240		6.11	148
360		4.61	212
	Summer	3.77	276
	Summer	3.23	338
	යි වෙනස් න	0.84	398
960		2,30	520
1440		1.71	754
2160		1.27	1100
	Summer	1.03	1468
	Summer	0.75	2200
5760		0.60	2936
7200	Summer	0.51	3624
8640	Summer	0.44	4368
	Summer	0.39	5136
15	Winter	42.09	17
30	Winter	25.93	30
60	Winter	18.04	43
	Minfer	9.90	86
	Minter	7.46	- 22
	Winter	8.11	158
	Winter	4.61	224
490	Minter	3.77	288

White Young Green
Brigantine House
27-31 Cumberland Street
Bristol BS2 8NL West Southall East Access Zone 2 Designed By RCB Date sept 08 Checked By Source Control W.11.2 File throttle pipe.src

Micro Drainage

Summary of Results for 30 year Return Perjod

Printingly of Resolts for 20 Aegi Metrill Editor									
Dura	orm tion ns)	Maximum Control (1/s)	Maximum Overflow (1/s)	Maximum Outflow (1/s)	Maximum Water Level (m OD)	Maximum Depth (m)	Overflow Volume (m ²)	Maximum Volume (m³)	Status
15	Summer	9.1	0.0	9.1	29,9408	0.6708	0.0	56.4	эк
30	Summer	9.5	0.0	9.5	30.0083	0.7393	0.10	62.0	0 к
60	Summer	9.7	0.0	9.7	30.0348	0.7648	0.0	64.2	0.3
120	Summer	9.7	0.0	9.7	30.0298	0.7598	0.0	63.8	0 K
190	Summer	9.5	0.0	9.5	30.0038	0,7338	0.0	61.8	0 X
240	Summer	9.3	0.0	9.3	29.9713	0.7013	0.0	58.9	0.8
360	Summer	8.8	0.0	8.9	29,9053	0.6353	0.0	53.3	0 K
490	Summer	5.4	0.0	8.4	29.8458	0,5757	0.0	48.4	0 X
600	Summer	9.3	0.0	6.0	29.7943	0.5242	0.0	44.3	O K
720	Summer	1,6	0.0	7.6	29.7492	0.4792	0.0	40.3	C K
960	Summer	7.0	0.0	7.0	29.6703	0,4002	0.0	33.6	C K
1440	Summer	5.9	0.0	3.9	29.5633	0.2932	0.0	24.6	СK
2160	Бипте∽	4.8	0.0	4.6	29.4638	0.1997	0.0	16.8	OK
2850	Summer	4.1	0.0	4,1	29.4168	0.1469	0.0	12.3	ОК
4320	Summer	3.3	0.0	3.3	29.3618	0.0919	0.0	7.7	0 K
5760	Summer	2.5	0.0	2.5	29.3493	0.0792	0.0	რ.7	OK
7200	Summer	2.1	0.0	2.1	29.3393	0.0632	0.0	5.8	ок
9840	Summer	1.0	C.C	1.8	29.3323	0.0622	0.0	5.2	эк
10080	Summer	1.6	0.0	1.6	29.3278	0.0577	0.0	4.8	0 K
15	Winter	9.7	0.0	9.7	30.0258	0.7558	0.0	63.5	эк
30	Winter	10.2	0.0	10.2	30,1063	0.8363	0.0	70.3	эк
_60	Winter	10.4	0.0	10.4	30,1418	0.8718	0.10 <u>.</u>	73.2	0 X
<u> </u>	Winter	10.3	0.0	10.3	30.1248	0.8548	0.0	77.8	0.3
180	Winter	10.0	0.0	10.0	30.0818	0.9118	0.0	68.2	0 %
240	Winter	9.7	0.0	9.7	35.0303	0.7608	0.0	63.9	0.8
360	Winter	9.0	0.0	9.0	29.9323	0.6623	0.0	55.6	0.8
	Winter	8.4	0.0	8,4	29,8473	0.5772	0.0	45.5	G K

Dura	tion ns)	Rain (mm/hr)	Time-Peak (mine)
15		106.81	17
30		62.81	31
	Summer	36.93	52 86
120		21.72	120
180		15.92	
240		12.77	154 222
	Stanoner	9.36 7.51	286
600	Summer	6,33	350
720		5.51	412
960		4.37	538
1440		3.16	780
2160		2.28	1128
2880		1.81	1498
4320		1.29	2200
5760		1.01	2936
7200		0.83	3872
8640		0.71	4400
10080	Summer	0.83	5136
15		106.81	17
30	Winter	62.81	31
60		36.93	 8c
	Winter	21.72	92
	Wirter	15.92	130
	Winter	12,77	166
	Winter	9.36	236
	Winter	7.51	304

White Young Green
Brigantine House
27-31 Cumberland Street

Bristol BS2 8NL Date sept 08

File south of railway.src Micro Drainage

West Southall East Access

Zone 4- new imp area

Designed By rcb
Checked By
Source Control W.11.2

Summary of Results for 100 year Return Period (+30%)

Dure	orm ution .ns)	Maximum Control (1/s)	Maximum Overflow (1/s)	Maximum Outflow (1/s)	Maximum Water Level (m OD)	Maximum Depth (m)	Overflow Volume (m³)	Maximum Volume (m²)	Status
15	Summer	0.8	0.0	0.8	0.4092	0.4092	0.0	20.5	ОК
30	Summer	0.9	0.0	0.9	0.4627	0.462/	0.0	23.1	0 X
60	Summer	0.9	0.0	0.9	0.5142	0.5142	0.0	25.7	0 8
120	Summer	1.0	0.0	1.0	0.5532	0.5532	0.0	27.7	Οĸ
180	Summer	0	0.0	1.0	0.5627	0.5627	0.0	28.1	CK
240	Summer	1.0	0.0	1.0	0.5612	0.5612	0.0	28.1	ОК
360	Summe≥	1.0	0.0	1.0	0,5552	0.3552	0.0	27.8	о к
480	Summer	1.0	0.0	1.0	0.546/	0.5467	0.0	27.3	СК
600	Summor	0.9	0.0	0.9	0.5352	0.3352	0.0	26.8	ОК
720	Summer	0.9	0.0	0.9	0,5232	0.5232	0.5	26.2	ок
980	Summer	0.9	0.0	0.9	0.4907	0,4907	0.0	24.5	ОК
1440	Summer	ე.8	0.0	0.9	0.4332	0.4332	0.0	21.7	ОК
2160	Simmer	0.8	0.0	0.8	0.3637	0.3637	3.0	18.2	ОК
2580	Sammer	0.7	0.0	3.7	0.3107	0.3107	0.0	15.5	ОК
4320	Summer	0.6	0.0	0.6	0.2302	0.2302	0.0	11.5	O K
5760	Summer	0.5	0.0	0.5	0.1782	0.1782	0.0	8.9	ОК
7200	Summer	0.5	0.0	0.5	0.1428	0.1429	0.0	7.1	0 3
3640	Summer	0.4	0.0	0.4	0.1173	0.1173	0.0	5.9	0 X
10090	Summer	C . 4	0.0	0.4	0.0993	0.0993	0.0	5.0	OK
1.5	Winter	0.9	0.0	0.9	0.4592	0.4592	0.0	33.0	O K
	Winter	0.9	0.0	0.9	0.5197	0.5197	0.0	28.0	C K
60	Winter	1.0	0.0	1.0	0.5787	0.3787	0.0	28.9	C K
130	Winder	1.0	0.0	1.0	0.6263	0.8263	0.0	313	OK
180	Winter	1.0	0.0	1.0	0.6408	0.6408	C.0	32.0	ОК
240	Winter	1.0	0.0	1.0	0.6413	0.6413	0.0	32.1	ОК
360	Winter	1.0	0.0	1.0	0.6298	0.6298	0.0	31.5	οк
480	Winter	1.0	0.0	1.0	0.6168	0.6169	0.0	30.8	ок

Dura	orm tion ns)	Rain (mm/hr)	Time-Peak (mios)
15 30 60 120 240 240 560 720 940 2180 2180 4320 5700 8640 1003 60	Summer Su	211.48 121.66 69.99 40.97 29.14 23.17 16.77 13.33 11.15 9.64 7.59 5.42 3.04 2.13 1.66 1.01 211.48 121.66	19 33 62 122 180 214 274 340 403 470 616 881 1274 2380 3112 3814 4504 5248 18 33
180 240	Winter Winter Winter Winter Winter	40.27 29.14 23.17 16.77 13.33	118 176 228 288 364

©1982-2008 Micro Drainage

White Young Green Brigantine House

27-31 Cumberland Street Bristol BS2 8NL

Date sept 08

File south of railway.src

Micro Drainage

West Southall East Access

Zone 4- new imp area

Designed By rcb Checked By

Source Control W.11.2

Summary of Results for 100 year Return Period (+30%)

Du	torm ration mins)	Maximum Control (1/s)	Maximum Overflow (1/s)	Maximum Outflow (1/s)	Maximum Water Level (m OD)	Maximum Depth (m)	Overflow Volume (m ³)	Maximum Volume (m²)	Status
60	0 Winter	1.0	0.0	1.0	0.6003	0.6003	0.0	30.0	OK
72	0 Winter	1.0	0.0	1.0	0.5819	0.5815	0.0	29.1	СК
	0 Winter	0.9	0.0	0.9	0.5362	0,5362	0.0	26.3	○ K
144	C Winter	0.9	0.0	0.9	0.4547	0.4547	0.0	22.7	о к
	C Winter	0.8	0.0	0.8	0.3602	0.3602	0.0	10.0	ОК
	C Winter	5.7	0.0	C.7	0.291/	0.2917	0.0	14.6	ОК
	C Winter	0.6	5.0	0.6	0.1952	0.1952	0.0	9.8	O K
	0 Winter	3.5	5.5	0.5	0.1398	0.1398	0.0	7.0	ОК
	0 Winter	5.4	5.5	Č.4	0.1053	0.1053	0.0	5.3	ОК
	O Winter	0.3	0.5	6.3	0.0333	0.0833	0.0	4.2	0.8
	0 Winter	3.3	0.0	ŏ.3	0.0678	0.0678	0.0	3.4	ОК

Dura	orm tion ns)	Rain (rum/hr)	Tima-Peak (mins)
600	Winter	11.15	440
720	Winter	9.64	514
960	Whither	7.59	664
1440	Winter	5.42	940
2160	Winter	3.86	1344
2880	Winter	3.94	1728
4320	Winter	2.13	2464
5760	Winter	1.65	3176
7200	Winter	1.36	3888
8640	Winter	1.16	4384
10080	Winter	1,01	5248

White Young Green		Page 3
Brigantine House	West Southall	
27-31 Cumberland Street	East Access	
Bristol BS2 8NL	Zone 4- new imp area	
Date sept 08	Designed By rcb	
File south of railway.src	Checked By	
Micro Drainage	Source Control W.11.2	

Rainfall Details

Region Return Period (years)		PZII	Rainfal, Model
Site Location	310530	179250	то 10550 79250
C (1km)			-0.026
D' (1km)			0.322
D2 (1km)			0.287
93 (1km)			0.240
E (1km)			0,310
F (1km)			2.580
Cv (Summer)			0.750
Cv (Winter)			0.840
Shortest Slorm (mins)			15
Longest Storm (mins)			10090
Summer Storms			Yes
Winter Storms			Yes
Climate Change k			+30

Time / Area Diagram

Total Area (ha) = 0.053

Time	(mins)	Area
from:	to:	(ha)
^	4	n "13

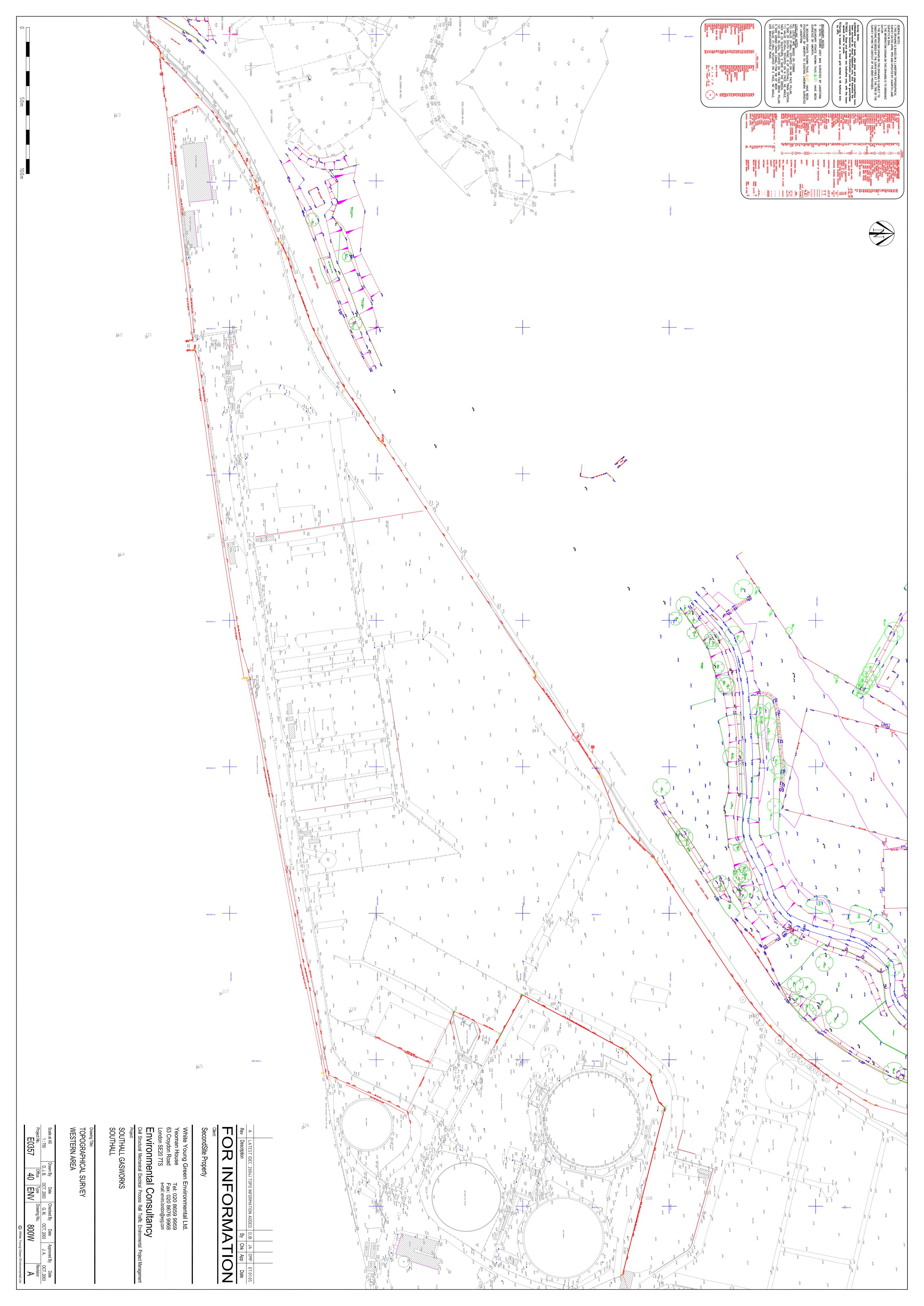
White Young Green	·	Page 4
Brigantine House	West Southall	\$600000 40000000000000000000000000000000
27-31 Cumberland Street	East Access	
Bristol BS2 8NL	Zone 4- new imp area	
Date sept 08	Designed By rcb	
File south of railway.src	Checked By	
Micro Drainage	Source Control W.11.2	

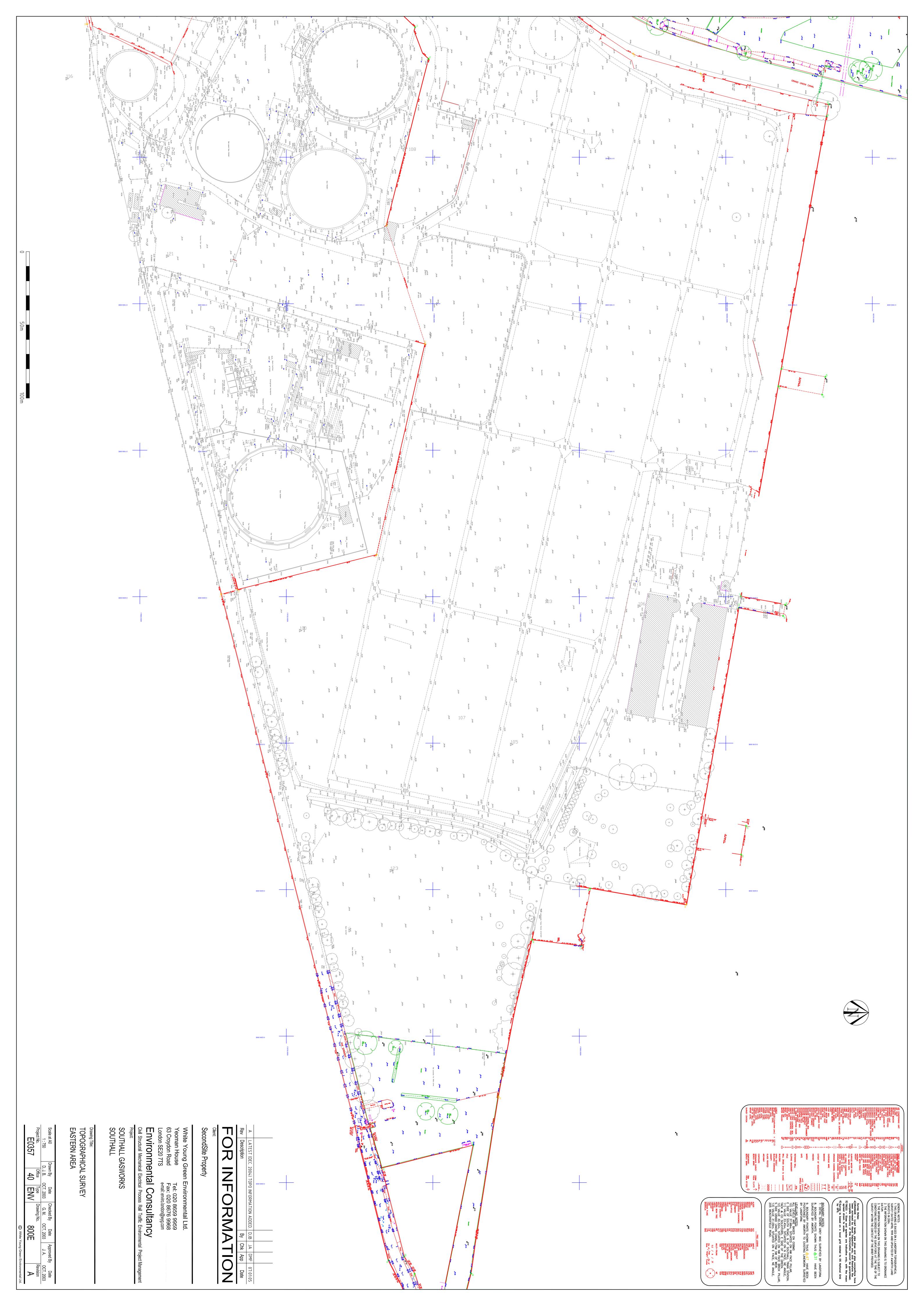
Tank/Pond Details

invert Level (m) 0.000 Ground Tevel (m) 2.000

								Depth (m)		
0.10 0.20 0.30	50.0 50.0 50.0	0.60 0.70 0.80	50.0 50.0 50.0	1.10 1.20 1.30	50.0 50.0 50.0	1.80 1.70 1.80	50.0 50.0 50.0	2.00 2.10 2.20 2.30 2.40	50.0 50.0 50.0	50.0

Orifice Outflow Control


Diameter (m) 0.025 Invert Level (m) 0.000 Discharge Coefficient 0.600


Weir / Flume Overflow Control

Discharge Coof 0.544 Width (m) 1.000 Crest Level (m) 1.000

APPENDIX A – Topographic Survey

APPENDIX B – Communications with the Environment Agency

Our Ref: NE/2005/012428-2/1

Your Ref: BEW/AD/130505LT/A17014

Date: 26 April 2005

White Green Young Yeoman House 63 Croydon Road London SE20 7TS

FAO: Brian Wilkins

Dear Sir,

SUBMISSION OF SURFACE WATER FLOOD RISK ASSESSMENT (FRA).

SOUTHALL GASWORKS REDEVELOPMENT, SOUTHALL, EALING, UB2

Thank you for your letter dated 13 April 2005, which was received on 14 April 2005. You are asked to quote our reference in any correspondence. The Environment Agency has the following comments:

The proposals awithin the FRA are acceptable because the discharge has been restricted to greenfield rate and 1 in 100 year attenuation has been provided. Whilst these proposals are acceptable we would like to see the inclusion of more sustainable drainage techniques in the final design. We would also prefer to see surface waters disposed off into the Yeading Brook through one single outfall rather than two outfalls.

I trust this is satisfactory but if you have any queries, please contact me.

Yours faithfully

LINDA CRUSE Planning Liaison Officer

Tel: 01707 632407 Fax: 01707 632515

Email: linda.cruse@environment-agency.gov.uk

APPENDIX C – Thames Water Asset Records

APPENDIX D – Allowable Run-off Rate Calculations

White Young Green	20,50,000	Page 1
Elliot House 130 Ber Street Norwich NR1 3AQ	A17014 Southall	INJERO V
Date Jan'08 File	Designed By MAB Checked By	Drainage:
Micro Drainage	Source Control W.10.4	

IH 124 Mean Annual Flood

Input

Return Period (years)	100	Soil	0.300
Area (Ha)	34.000	Urban	0.000
SAAR (mm)	639.000	Region Number	6

Results		1/s				
	QBAR QBAR	Rural Urban	58.1 58.1	=	1.71	e/s/Ha
Q	100	years	185.4			
0000000000000	10 20 25 30 50 100 200	year years years years years years years years years years years	49.4 51.2 74.4 94.1 116.4 124.8 131.7 152.2 185.4 217.9 228.4	~		
Q	1000	years	299.8			

APPENDIX E – Proposed Development

West Southall illustrative landscape

Scale 1:1250

APPENDIX F – Foul Impact Study Report

SEWER IMPACT STUDY

X4503 - 128

PROPOSED DEVELOPMENT AT SOUTHALL GAS WORK

FOUL WATER SYSTEM

Thames Water Utilities

Gainsborough House / Blake House Manor Farm Road Reading Berkshire RG2 0JN

Author : Norman Yong Date : 1 March 2005

Checked by : Geof Brown Date : 9 March 2005

Approved by : Paul Eccleston Date : 15 March 2005

Issue : 1

Contents

1.0	Introduction
2.0	Background
3.0	Existing Sewerage System
4.0	Thames Water Drainage Requirements
5.0	Sewer Impact Assessment
6.0	Conclusion

Appendices

7.0

A Verification Results

Recommendations

1.0 Introduction

The following report was commissioned by Developer Services Waste on behalf of White Young Green Consulting to investigate the capacity within the existing public foul water system and to ascertain the impact of the proposed development on the public sewerage system.

The scope of the study includes:

- The production of a detailed hydraulic model for the local foul water system.
- The incorporation of the detailed foul model to the existing Mogden macro model.
- Flow surveys in the foul water system.
- Verification of the foul water model.
- The assessment of the impact of additional flows on the existing sewerage system using the verified model.
- Proposal of solutions to any adverse affects of the development.

2.0 Background

The site is located within the Mogden STW Catchment.

The boundary of the proposed development is highlighted in Figure 1 below. The proposed development would consist of approximately 4,052 housing units. The Developer has indicated that their estimated foul flow for the whole development is 32.4l/s.

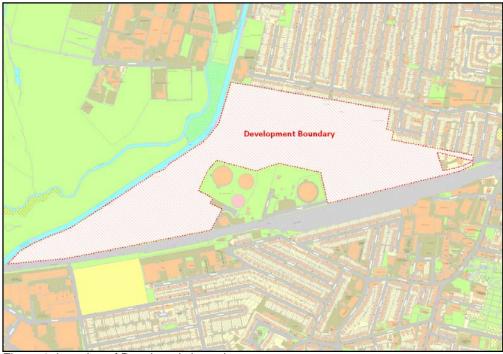


Figure 1: Location of Developer's boundary.

Based on sewer for adoption (4000l/dwelling/day), it is estimated that the design flow for the development is approximately 194 l/s.

3.0 Existing sewerage system

The layout of the proposed development indicates that the flows from the development would naturally connect to existing manhole TQ11791402. This manhole is located on the southwest section of the development. The existing sewer along here is 600mm in diameter and discharges to the Crane Valley Trunk Sewer. The 600mm diameter sewer downstream of manhole TQ11791402 has a pipe full capacity of 272l/s. An alternate point of connection for the proposed development would be at Southall Gas Works compound at manhole TQ11798702. The 225mm diameter sewer downstream of manhole TQ11798702 has a pipe full capacity of 38l/s. Flows from the Mogden Catchment are treated at Mogden STW.

An assessment of the sewerage system in this area revealed an existing 775m of 1500mm diameter tank sewer (Refer to Figure 2) upstream of manhole TQ11791402 along Western Road.

Figure 2: Location of 1500mm diameter tank sewer.

An assessment of Thames Water sewer flooding history database (SFHD) highlighted 10 known flooding incidents between January 2000 and December 2004. These are flooding incidents within the detailed model that discharge to manhole TQ11791402. An assessment of the flooding incidents indicated that they were caused by blockages of the sewers that restricted the use of toilets.

Figure 3 shows the locations of the recorded flooding incidents highlighted in red.

Figure 3: Locations of flooding incidents.

4.0 Thames Water Drainage Requirements

It is necessary to provide separate foul and surface water drainage systems and to ensure that each system is connected to an appropriate drainage system.

The development should caused no detriment to the system in a 1 in 15 year FEH critical duration storm.

5.0 Sewer Impact Assessment

5.1 Model Build

The asset information has been obtained from Thames Water's GIS system and is assumed to be correct. In the model build, where level data is missing it has been interpolated. The detailed model for use in assessing the impact of the proposed development flow is a 305nodes model with a catchment area of 142ha. Population based on address count of 2.5 person per household was calculated to be 10,740.

5.2 Model Verification

The verification of the model was carried out using data from a short-term flow survey, commissioned as part of this study. The flow survey was carried out between 30th November 2004 and 19th January 2005 and consisted of 2 rain gauges and 3 flow monitors.

Rainfall events on the 17th, 28th December 2004 and 8th January 2005 were selected for verification of the model. All three events had a return period of less than 1 in 1 year based on Flooding Estimation Handbook (FEH) software estimation.

With regards to the foul system, the flow survey indicated the likely presence of a large amount of silt in the network. As such, a large amount of sediment was included to calibrate the hydraulic model. These sediments were modelled downstream of flow monitors FM6 and FM7.

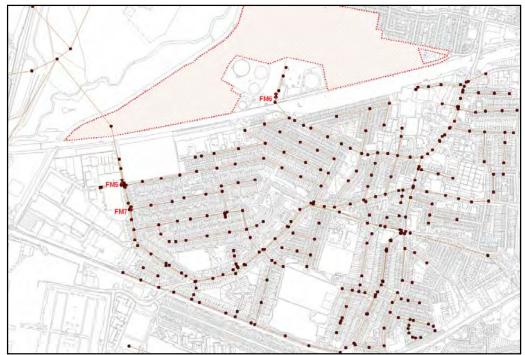


Figure 4: Location of flow monitors.

The calibration for DWF required the population in the model to be increase by a factor of 2. This was due to the observed flow survey data on the volume of flows discharging through flow monitor FM7. As such, the original calculated population based on address count increased to a total of approximately 23,500. Infiltration was discounted as the observed flow survey data did not record any abnormal base flow.

For the DWF verification, the model shows an over prediction on the depth hydrograph in comparison to the observed depth. For the storm events verification, the model shows good fit for the observed storm events.

The verification results are shown on Appendix A.

The verified model was then investigated for hydraulic performance and solutions investigated to mitigate the effects of the proposed flows.

5.3 Return Period Analysis

As is current best practice the Flooding Estimation Handbook (FEH) storm profiles were used for analysis of the network. The critical storm duration (the duration producing the greatest number of flooded nodes) was found to be 30 minutes and 60 minutes (the greatest flood volume within the detailed model).

The existing calibrated foul sewerage network in the detailed model was found to flood in a 1 in 2 year return period storm of 30 minutes critical duration. This is the calibrated model with a large amount of sediment modelled. Figure 5 shows the

flooded nodes (Flood volume >25m³). Flooding was occurring at locations with no known flooding incident recorded in Thames Water SFHD database. It is also likely that during intense short duration rainfall events, inflows to the sewers are restricted by the capacity of the road gullies.

It is possible that any flooding from the foul sewers would drain into the adjacent storm sewerage system and not flood any properties.

Figure 5: 1 in 2 year return period storm. Flooded nodes highlighted in blue.

The flooded nodes could also be attributed to incorrect distribution of impermeable areas within the contributing areas of the detailed model than what is perceived in reality. In calibrating the model, 140mm of sediment was modelled downstream of FM7 and this would likely cause the model to predict flooding upstream. It was necessary to increase the population by a factor of 2 globally within the detailed model during calibration of the model. This would have the likely impact of inducing flooding at sewer branches to the main drainage of the detailed model.

The relatively few flow monitors on site and no impermeable area survey meant that it is difficult to effectively calibrate every sub catchments of the detailed model. As such, without a detailed flow survey, judgement should be used in understanding the flooded areas predicted by the model.

5.4 Impact Assessment

The impact has been assessed based on the proposed design flow of 194.4 l/s (6 x 32.4 l/s). From the location of the proposed development, flows were assumed to discharge to existing manhole TQ11791402. The hydraulic analysis identified that the existing sewers downstream of manhole TQ11791402 have sufficient capacity to accept the additional proposed design flow in DWF condition.

During design storm condition, there was a small increase in the flood volume. The table below listed the total flood volumes from the existing system and the proposed development.

Reference	2 year return period (m³)	5 year return period (m³)	15 year return period (m³)	
Existing system without silt	877	1997	3833	
Existing system with silt	890	1999	3833	
Existing system with development & silt	878	2000	3846	
Existing system with development & without silt	878	1993	3835	

Alternate location for the connection of the proposed flow at manhole TQ11798702 was not appropriate due to insufficient capacity of the existing 225mm diameter sewer. Manhole TQ11798702 is located at Southall Gas Works compound.

Figure 6: Locations of existing manholes.

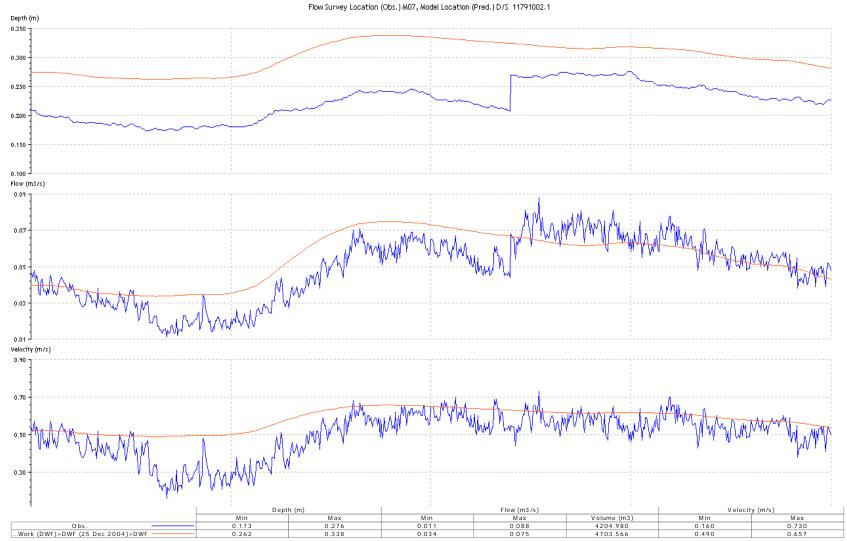
An analysis of the trunk sewers downstream of the model was carried out with a typical design storm event of 15 year 360mins duration. The table below listed the changes in surcharge levels in the trunk sewers downstream and upstream of the proposed connection point.

Infoworks Node id	Existing situation	Existing situation + development
10-157	16.679	16.819
10-155	18.260	18.510
10-150	19.980	20.360
10-146	20.330	20.709
10-140	22.302	22.630

6.0 Conclusion

It can be concluded that the existing system has the capacity to cater for the increase in DWF from the proposed development.

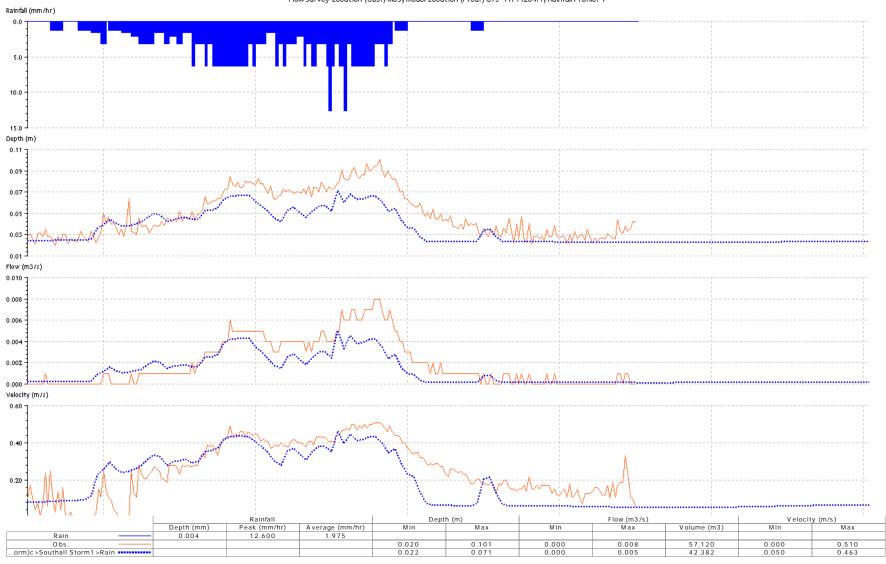
The hydraulic analysis of the system using design storm events does highlight hydraulic deficiency in the system during storm events. As such, the developer should ensure that no storm flows discharges directly or indirectly into the existing foul system.

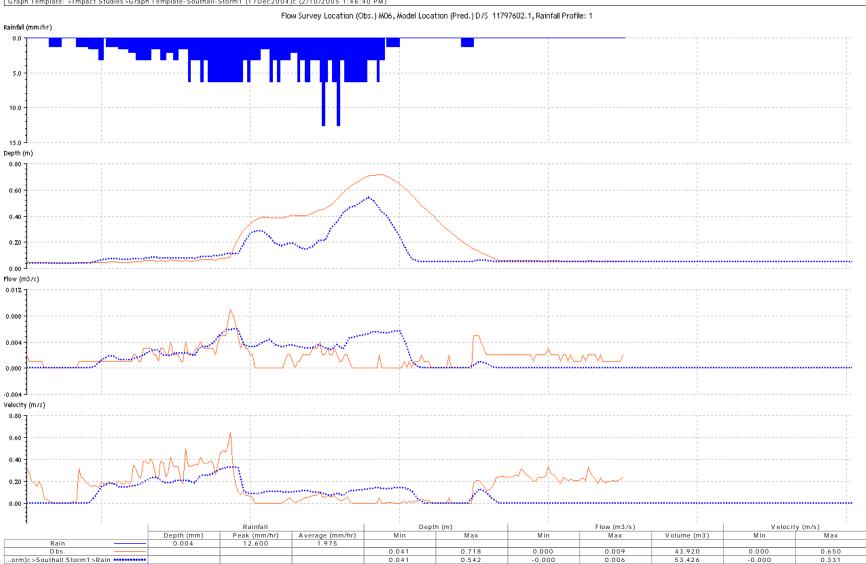

7.0 Recommendations

It is recommended that the additional foul flows from the proposed development be allowed to connect to the public sewers at manhole TQ11791402.

The above are recommendations to Thames Water Utilities, Developer Services Waste and may be altered/added to based on local operational knowledge of the system.

Appendix A – Verification Results


Observed / Predicted Plot Produced by nyong (3/8/2005 10:58:42 AM) Page 2 of 2
Flow Survey: >Impact Studies>Flow Survey-DWF (25 Dec2004)c (2/10/2005 9:16:34 AM)
Sim: >Impact Studies>Flow Group-Southall Gas Work (DWF)>DWF (25 Dec2004)-DWF (3/4/2005 5:55:15 PM)
Graph Template: >Impact Studies>Graph Template-Southall Gas Work (25 Dec2004)c (2/10/2005 1:32:27 PM)


Observed / Predicted Plot Produced by nyong (3/8/2005 11:00:41 AM) Page 1 of 3 Flow Survey: >Impact Studies>Flow Survey-Storm1 (17Dec2004)c (2/10/2005 1:38:04 PM)

Sim: >Impact Studies>Run Group-Southall Gas Work (Storm)c>Southall Storm1>Rain (3/4/2005 6:35:52 PM)
Graph Template: >Impact Studies>Graph Template-Southall-Storm1 (17Dec2004)c (2/10/2005 1:46:40 PM)

Observed / Predicted Plot Produced by nyong (3/8/2005 11:00:41 AM) Page 2 of 3
Flow Survey: >Impact Studies>Flow Survey-Storm1 (17Dec2004)c (2/10/2005 1:38:04 PM)
Sim: >Impact Studies>Run Group-Southall Gas Work (Storm)c>Southall Storm1>Rain (3/4/2005 6:35:52 PM)
Graph Template: >Impact Studies>Graph Template-Southall-Storm1 (17Dec2004)c (2/10/2005 1:46:40 PM)

Observed / Predicted Plot Produced by nyong (3/8/2005 11:00:41 AM) Page 3 of 3 Flow Survey: >Impact Studies >Flow Survey-Storm1 (17Dec2004)c (2/10/2005 1:38:04 PM) Sim: >Impact Studies >Run Group-Southall Gas Work (Storm)c>Southall Storm1>Rain (3/4/2005 6:35:52 PM)

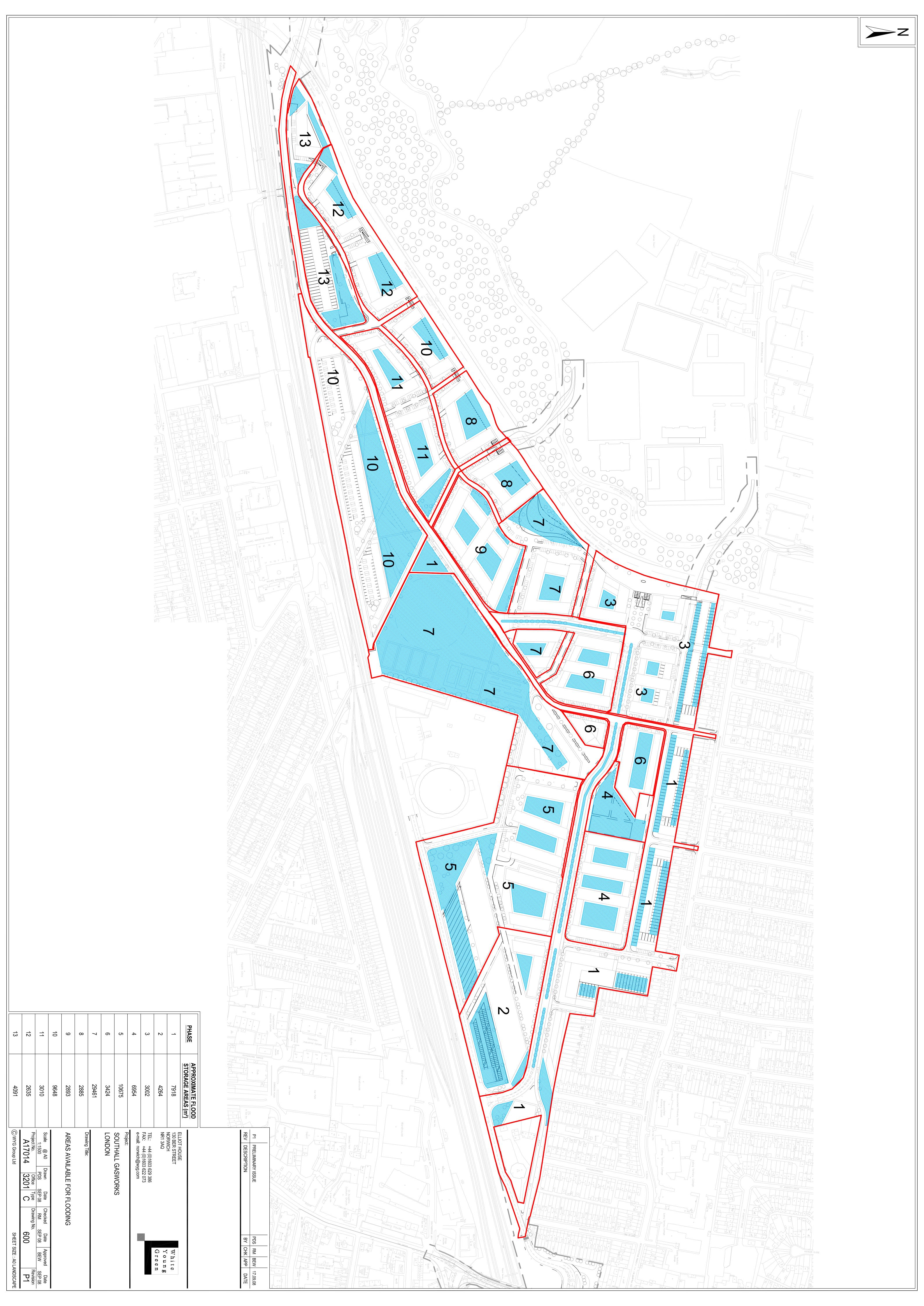
...orm)c >Southall Storm1 >Rain

Graph Template: >Impact Studies >Graph Template-Southall-Storm1 (17Dec2004)c (2/10/2005 1:46:40 PM) Flow Survey Location (Obs.) M07, Model Location (Pred.) D/S 11791002.1, Rainfall Profile: 1 Rainfall (mm/hr) 5.0 10.0 15.0 Depth (m) 1.20 1.00 0.80 0.60 0.20 Flow (m3/s) 0.40 0.30 0.20 0.00 Velocity (m/s) 1.40 1.20 1.00 0.80 0.60 Flow (m3/s) Max Rainfall Depth (mm) 0.004 A verage (mm/hr) 1.975 Min Max Min Min Max Peak (mm/hr) 12.600 Rain 0.333 5773.080 Obs. 0.231 0.048 0.480 1.170

0.298

1.069

0.052


6916.644

0.576

1.210

APPENDIX G – Preliminary Phasing/Above Ground Storage Areas

APPENDIX H – Storage Calculation/Above Ground Storage Depths

Phase No.	Approx Net	Assumed 80%	Greenfield Runoff Rate (IH 124 Method)		Approx Attenuation Volume Required			Approx Area Available For	Approx Mean
	Area (ha)	Impermeable (ha)	1 in 30 Year (l/s)	1 in 100 Year +CC (l/s)	1 in 30 Year (m3)	1 in 100 Year +CC (m3)	Difference (m3)	Above Ground Storage (m2)	Flood Depth (m)
1	5.8	4.6	18.0	25.3	1484.9	2626.3	1141.4	7918.04	0.14
2	1.9	1.5	5.9	8.3	483.9	855.0	371.1	4264.41	0.09
3	2.8	2.2	8.7	12.2	707.7	1253.3	545.6	3002.43	0.18
4	1.8	1.4	5.6	7.8	448.9	796.6	347.7	6954.40	0.05
5	3.9	3.1	12.1	17.0	1001.5	1771.3	769.8	10675.39	0.07
6	1.9	1.5	5.9	8.3	483.4	855	371.6	3424.45	0.11
7	5.0	4.0	15.5	21.8	1295.3	2289.2	993.9	29461.47	0.03
8	1.8	1.4	5.6	7.8	448.9	796.6	347.7	2884.59	0.12
9	1.2	1.0	3.7	5.2	328.6	579.1	250.5	2893.45	0.09
10	3.7	3.0	11.5	16.1	974.8	1723.7	748.9	9647.77	0.08
11	1.5	1.2	4.6	6.5	389.9	687.9	298.0	3009.85	0.10
12	1.3	1.0	4.0	5.7	320.5	565.5	245.0	2635.27	0.09
13	1.2	1.0	3.7	5.2	328.6	579.1	250.5	4090.73	0.06
Total	33.8	27.0	104.6	147.4	8696.9	15378.6	6681.7	90862.25	0.07

- ◆ During storm events up to the critical 1 in 30 year, storage will be provided using one or more of the following methods:
 - Adopted large diameter pipes/box culverts
 - Private geo-cellular/steel tanks
 - Wetland features (phase 10 only)

Consideration must be given during the detail drainage submission of all phases to the use of:

- Green roofs (assumed zero storage)
- Rain water harvesting (assumed zero storage)

- ◆ During storm events between the critical 1 in 30 year and 1 in 100 year plus climate change, storage will be provided using one or more of the following methods:
 - Permeable paving (sub base storage) where land use is deemed appropriate
 - Above ground storage (controlled flooding)
 - Lined swales (where land is available following detailed design)
 - Dry detention basins (where land is available following detailed design)
 - Private geo-cellular/steel tanks (should lined swales/dry detention basin be proven not to be feasible as a first option due to site density)
 - Wetland features (phase 10 only)

The exact SUDs methods used will depend on which phase of the development is being constructed and how dense the proposed layout is for that particular phase once the detail layout and level design has been completed. The proposed mean flood depths stated above are approximate only and have been base on available land within each phase which could be use for one or more of the SUDs solutions stated above for storm events between 1 in 30 year and 1 in 100 year plus climate change event. Therefore the mean flood depths above actually represent the worst case scenario of above ground controlled flooding. This is because some of this storage may be placed below ground (e.g. Permeable Paving) or within structure with deeper storage depth than stated above such as lined Swales or detention basins (approx 1m deep).